The red stellar population in NGC 1569


Abstract in English

We present HST NICMOS photometry of the resolved stellar population in NGC 1569. The CMD in the F110W and F160W photometric bands contains ~2400 stars with a formal photometric error < 0.1 mag down to J~23.5 and H~22.5. We describe the data processing which is required to calibrate the instrumental peculiarities of NICMOS. Two different packages for PSF-fitting photometry are used to strengthen the photometric results in the crowded stellar field of NGC 1569. The resulting CMD is discussed in terms of the major evolutionary properties of the resolved stellar populations. For a distance modulus of 26.71 and a reddening E(B-V)=0.56, our CMD samples stars down to ~0.8 Mo, corresponding to look-back times > 15 Gyr. This is clear indication of SF activity spanning an entire Hubble time. The metallicity of the reddest RGB stars is in better agreement with Z=0.004 as measured in HII regions, than with Z=0.0004 as expected from the stellar ages. The presence of - yet undetected - very metal-poor stars embedded in the stellar distribution around J=22.75 and J-H=1.15 is, however, not ruled out. The youngest stars (< 50 Myr) are preferentially found around the two central super star clusters, whereas the oldest population has a more uniform spatial distribution. A SFR per unit area of 1 Mo yr*(-1) kpc*(-2) and a mass formed in stars of ~ 1.4x10*6 Mo in the last 50 Myr are derived from the CMD. The NIR CMD places strong constraints on the lower limit of the onset of SF in NGC 1569. The exceptionally high crowding in the NICMOS images of NGC 1569 is a challenge for the photometric analysis. As a result, optical and NIR images of NGC 1569 sample different populations and cannot be cross-correlated. Nevertheless, we demonstrate the consistency of the SF histories derived from the optical and NIR CMDs.

Download