Do you want to publish a course? Click here

ISO-SWS calibration and the accurate modelling of cool-star atmospheres: I. Method

63   0   0.0 ( 0 )
 Added by Leen Decin
 Publication date 2000
  fields Physics
and research's language is English
 Authors L. Decin




Ask ChatGPT about the research

A detailed spectroscopic study of the ISO-SWS data of the red giant Alpha Tau is presented, which enables not only the accurate determination of the stellar parameters of Alpha Tau, but also serves as a critical review of the ISO-SWS calibration. This study is situated in a broader context of an iterative process in which both accurate observations of stellar templates and cool star atmosphere models are involved to improve the ISO-SWS calibration process as well as the theoretical modelling of stellar atmospheres. Therefore a sample of cool stars, covering the whole A0 -- M8 spectral classification, has been observed in order to disentangle calibration problems and problems in generating the theoretical models and corresponding synthetic spectrum. By using stellar parameters found in the literature large discrepancies were seen between the ISO-SWS data and the generated synthetic spectrum of Alpha Tau. A study of the influence of various stellar parameters on the theoretical models and synthetic spectra, in conjunction with the Kolmogorov-Smirnov test to evaluate objectively the goodness-of-fit, enables us to pin down the stellar parameters with a high accuracy: Teff = 3850 +/- 70 K, log g = 1.50 +/- 0.15, M = 2.3 +/- 0.8 Msun, z = -0.15 +/- 0.20 dex, microturbulence = 1.7 +/- 0.3 km/s, 12C/13C= 10 +/- 1, abundance of C = 8.35 +/- 0.20 dex, abundance of N= 8.35 +/- 0.25 dex, abundance of O = 8.83 +/- 0.15 dex and the angular diameter is 20.77 +/- 0.83 mas. These atmospheric parameters were then compared with the results provided by other authors using other methods and/or spectra.



rate research

Read More

Cool giant and supergiant star atmospheres are characterized by complex velocity fields originating from convection and pulsation processes which are not fully understood yet. The velocity fields impact the formation of spectral lines, which thus contain information on the dynamics of stellar atmospheres. The tomographic method allows to recover the distribution of the component of the velocity field projected on the line of sight at different optical depths in the stellar atmosphere. The computation of the contribution function to the line depression aims at correctly identifying the depth of formation of spectral lines in order to construct numerical masks probing spectral lines forming at different optical depths. The tomographic method is applied to 1D model atmospheres and to a realistic 3D radiative hydrodynamics simulation performed with CO5BOLD in order to compare their spectral line formation depths and velocity fields. In 1D model atmospheres, each spectral line forms in a restricted range of optical depths. On the other hand, in 3D simulations, the line formation depths are spread in the atmosphere mainly because of temperature and density inhomogeneities. Comparison of CCF profiles obtained from 3D synthetic spectra with velocities from the 3D simulation shows that the tomographic method correctly recovers the distribution of the velocity component projected on the line of sight in the atmosphere.
Mid-infrared (MIR) imaging and spectroscopic observations are presented for a well defined sample of eight closely interacting (CLO) pairs of spiral galaxies that have overlapping disks and show enhanced far-infrared (FIR) emission. The goal is to study the star formation distribution in CLO pairs, with special emphasis on the role of overlap starbursts. Observations were made with the Infrared Space Observatory (ISO) using the CAM and SWS instruments. The ISO~CAM maps, tracing the MIR emission of warm dust heated by young massive stars, are compared to new ground based H$alpha$ and R-band images. We identify three possible subgroups in the sample, classified according to the star formation morphology: (1) advanced mergers (Arp~157, Arp~244 and Arp~299), (2) severely disturbed systems (Arp~81 and Arp~278), and (3) less disturbed systems (Arp~276, KPG 347 and KPG 426). Localized starbursts are detected in the overlap regions in all five pairs of subgroups (1) and (2), suggesting that they are a common property in colliding systems. Except for Arp~244, the overlap starburst is usually fainter than the major nuclear starburst in CLO pairs. Star formation in less disturbed systems is often distributed throughout the disks of both galaxies with no overlap starburst detected in any of them. These systems also show less enhanced FIR emission, suggesting that they are in an earlier interaction stage than pairs of the other two subgroups where the direct disk collisions have probably not yet occurred.
Infrared spectroscopy is a powerful tool to probe the inventory of solid state and molecular species in circumstellar ejecta. Here we analyse the infrared spectrum of the Asymptotic Giant Branch star W Hya, obtained by the Short and Long Wavelength Spectrometers on board of the Infrared Satellite Observatory. These spectra show evidence for the presence of amorphous silicates, aluminum oxide, and magnesium-iron oxide grains. We have modelled the spectral energy distribution using laboratory measured optical properties of these compounds and derive a total dust mass loss rate of 3E-10 Msol/yr. We find no satisfactory fit to the 13 micron dust emission feature and the identification of its carrier is still an open issue. We have also modelled the molecular absorption bands due to H2O, OH, CO, CO2, SiO, and SO2 and estimated the excitation temperatures for different bands which range from 300 to 3000K. It is clear that different molecules giving rise to these absorption bands originate from different gas layers. We present and analyse high resolution Fabry-Perot spectra of the three CO2 bands in the 15 micron region. In these data, the bands are resolved into individual Q-lines in emission, which allows the direct determination of the excitation temperature and column density of the emitting gas. This reveals the presence of a warm (about 450K) extended layer of CO2, somewhere between the photosphere and the dust formation zone. The gas in this layer is cooler than the 1000K CO2 gas responsible for the low-resolution absorption bands at 4.25 and 15 micron. The rotational and vibrational excitation temperatures derived from the individual Q-branch lines of CO2 are different (450K and 150K, respectively) so that the CO2 level population is not in LTE.
We present new ISO-SWS data for a sample of 27 starburst galaxies, and with these data examine the issues of formation and evolution of the most massive stars in starburst galaxies. Using starburst models which incorporate time evolution, new stellar atmosphere models for massive stars, and a starburst model geometry derived from observations of the prototypical starburst M82, we model the integrated mid-infrared line ratio [NeIII](15.6 microns)/[NeII](12.8 microns). This line ratio is sensitive to the hardness of the stellar energy distribution and therefore to the most massive stars present. We conclude from our models, with consideration of recent determinations of the stellar census in local, high-mass star forming regions, that the [NeIII]/[NeII] ratios we measure are consistent with the formation of massive (~50-100 solar mass) stars in most starbursts. In this framework, the low nebular excitation inferred from the measured line ratios can be attributed to aging effects. By including estimates of the ratio of infrared-to-Lyman continuum luminosity for the galaxies in our sample, we further find that most starbursts are relatively short-lived (1-10 million years), only a few O-star lifetimes. We discuss a possible cause of such short events: the effectiveness of stellar winds and supernovae in destroying the starburst environment.
We report ISO SWS infrared spectroscopy of the H II region Hubble V in NGC 6822 and the blue compact dwarf galaxy I Zw 36. Observations of Br alpha, [S III] at 18.7 and 33.5 microns, and [S IV] at 10.5 microns are used to determine ionic sulfur abundances in these H II regions. There is relatively good agreement between our observations and predictions of S^+3 abundances based on photoionization calculations, although there is an offset in the sense that the models overpredict the S^+3 abundances. We emphasize a need for more observations of this type in order to place nebular sulfur abundance determinations on firmer ground. The S/O ratios derived using the ISO observations in combination with optical data are consistent with values of S/O, derived from optical measurements of other metal-poor galaxies. We present a new formalism for the simultaneous determination of the temperature, temperature fluctuations, and abundances in a nebula, given a mix of optical and infrared observed line ratios. The uncertainties in our ISO measurements and the lack of observations of [S III] lambda 9532 or lambda 9069 do not allow an accurate determination of the amplitude of temperature fluctuations for Hubble V and I Zw 36. Finally, using synthetic data, we illustrate the diagnostic power and limitations of our new method.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا