No Arabic abstract
We investigate the origin of the ubiquitous 0.5 - 10 Hz QPO in the Galactic microquasar GRS 1915+105. Using the archival X-ray data from RXTE, we make a wide band X-ray spectral fitting to the source during a low-hard state observed in 1999 June. We resolve the X-ray spectra into three components, namely a multi-color disk component, a Comptonised component and a power-law at higher energies. This spectral description is favored compared to other normally used spectra like a cut-off power law, hard components with reflection etc. We find that the 0.5 - 10 Hz QPO is predominantly due to variations in the Comptonised component. We use this result to constrain the location of the various spectral components in the source.
The X-ray spectrum of GRS 1915+105 is known to have a ``broad iron spectral feature in the spectral hard state. Similar spectral features are often observed in Active Galactic Nuclei (AGNs) and other black-hole binaries (BHBs), and several models have been proposed for explaining it. In order to distinguish spectral models, time variation provides an important key. In AGNs, variation amplitude has been found to drop significantly at the iron K-energy band at timescales of ~10 ks. If spectral variations of black-holes are normalized by their masses, the spectral variations of BHBs at timescales of sub-seconds should exhibit similar characteristics to those of AGNs. In this paper, we investigated spectral variations of GRS 1915+105 at timescales down to ~10 ms. This was made possible for the first time with the Suzaku XIS Parallel-sum clocking (P-sum) mode, which has the CCD energy-resolution as well as a time-resolution of 7.8 ms. Consequently, we found that the variation amplitude of GRS 1915+105 does not drop at the iron K-energy band at any timescales from 0.06 s to 63000 s, and that the entire X-ray flux and the iron feature are independently variable at timescales of hours. These are naturally understood in the framework of the ``partial covering model, in which variation timescales of the continuum flux and partial absorbers are independent. The difference of energy dependence of the variation amplitude between AGN and BHB is presumably due to different mechanisms of the outflow winds, i.e., the partial absorbers are due to UV-line driven winds (AGN) or thermally-driven winds (BHB).
We combine a complete sample of 113 pointed observations taken with the Rossi X-ray Timing Explorer between 1996-1999, monitoring observations taken with the Ryle telescope and the Green Bank Interferometer, and selected observations with the Very Large Array to study the radio and X-ray properties of GRS 1915+105 when its X-ray emission is hard and steady. We establish that radio emission always accompanies the hard-steady state of GRS 1915+105, but that the radio flux density at 15.2 GHz and the X-ray flux between 2-200 keV are not correlated. Therefore we study the X-ray spectral and timing properties of GRS 1915+105 using three approaches: first, by describing in detail the properties of three characteristic observations, then by displaying the time evolution of the timing properties during periods of both faint and bright radio emission, and lastly by plotting the timing properties as a function of the the radio flux density. We find that as the radio emission becomes brighter and more optically thick, 1) the frequency of a ubiquitous 0.5-10 Hz QPO decreases, 2) the Fourier phase lags between hard (11.5-60 keV) and soft (2-4.3 keV) in the frequency range of 0.01-10 Hz change sign from negative to positive, 3) the coherence between hard and soft photons at low frequencies decreases, and 4) the relative amount of low frequency power in hard photons compared to soft photons decreases. We discuss how these results reflect upon basic models from the literature describing the accretion flow around black holes and the possible connection between Comptonizing electrons and compact radio jets.
We report on the X-ray spectral behavior within the steady states of GRS 1915+105. Our work is based on the full data set on the source obtained using the Proportional Counter Array on the Rossi X-ray Timing Explorer and 15 GHz radio data obtained using the Ryle Telescope. The steady observations within the X-ray data set naturally separated into two regions in the color-color diagram and we refer to them as steady-soft and steady-hard. GRS 1915+105 displays significant curvature in the coronal component in both the soft and hard data within the {it RXTE}/PCA bandpass. A majority of the steady-soft observations displays a roughly constant inner disk radius (R_in), while the steady-hard observations display an evolving disk truncation which is correlated to the mass accretion rate through the disk. The disk flux and coronal flux are strongly correlated in steady-hard observations and very weakly correlated in the steady-soft observations. Within the steady-hard observations we observe two particular circumstances when there are correlations between the coronal X-ray flux and the radio flux with log slopes eta~0.68 +/- 0.35 and eta ~ 1.12 +/- 0.13. They are consistent with the upper and lower tracks of Gallo et al. (2012), respectively. A comparison of model parameters to the state definitions show that almost all steady-soft observations match the criteria of either thermal or steep power law state, while a large portion of the steady-hard observations match the hard state criteria when the disk fraction constraint is neglected.
We report the discovery in the Rossi X-Ray Timing Explorer data of GRS 1915+105 of a second quasi-periodic oscillation at 34 Hz, simultaneous with that observed at 68 Hz in the same observation. The data corresponded to those observations from 2003 where the 68-Hz oscillation was very strong. The significance of the detection is 4.2 sigma. These observations correspond to a very specific position in the colour-colour diagram for GRS 1915+105, corresponding to a harder spectrum compared to those where a 41 Hz oscillation was discovered. We discuss the possible implications of the new pair of frequencies comparing them with the existing theoretical models.
GRS1915+105 is a very peculiar black hole binary that exhibits accretion-related states that are not observed in any other stellar-mass black hole system. One of these states, however -- referred to as the plateau state -- may be related to the canonical hard state of black hole X-ray binaries. Both the plateau and hard state are associated with steady, relatively lower X-ray emission and flat/inverted radio emission, that is sometimes resolved into compact, self-absorbed jets. However, while generally black hole binaries quench their jets when the luminosity becomes too high, GRS1915+105 seems to sustain them despite the fact that it accretes at near- or super-Eddington rates. In order to investigate the relationship between the plateau and the hard state, we fit two multi-wavelength observations using a steady-state outflow-dominated model, developed for hard state black hole binaries. The data sets consist of quasi-simultaneous observations in radio, near-infrared and X-ray bands. Interestingly, we find both significant differences between the two plateau states, as well as between the best-fit model parameters and those representative of the hard state. We discuss our interpretation of these results, and the possible implications for GRS 1915+105s relationship to canonical black hole candidates.