Do you want to publish a course? Click here

A Close Separation Double Quasar Lensed by a Gas-Rich Galaxy

111   0   0.0 ( 0 )
 Added by Michael D. Gregg
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the course of a Cycle 8 snapshot survey, we have discovered that the z=1.565 quasar HE 0512-3329 is a double with image separation 0.644, almost certainly due to gravitational lensing. The two components differ in brightness by only 0.4 magnitudes and a high signal-to-noise ground-based composite optical spectrum shows no trace of any stellar features at zero redshift, essentially ruling out the possibility that one of the two components is an ordinary Galactic star. The optical spectrum shows strong absorption features of MgII, MgI, FeII, FeI, and CaI, all at an identical intervening redshift of z=0.9313, probably due to the lensing object. The strength of the MgII and the presence of the other low ionization absorption features is strong evidence for a damped Lyman alpha system, likely the disk of a spiral galaxy. Point spread function fitting to remove the two quasar components from the STIS image leads to a tentative detection of a third object which may be the nucleus of the lensing galaxy. The brighter component is significantly redder than the fainter, due to either differential extinction or microlensing.

rate research

Read More

We present a study of cold gas absorption from a damped Lyman-$alpha$ absorber (DLA) at redshift $z_{rm abs}=1.946$ towards two lensed images of the quasar J144254.78+405535.5 at redshift $z_{rm QSO} = 2.590$. The physical separation of the two lines of sight at the absorber redshift is $d_{rm abs}=0.7$~kpc based on our lens model. We observe absorption lines from neutral carbon and H$_2$ along both lines of sight indicating that cold gas is present on scales larger than $d_{rm abs}$. We measure column densities of HI to be $log N(rm H,i) = 20.27pm0.02$ and $20.34pm0.05$ and of H$_2$ to be $log N(rm H_2) = 19.7pm0.1$ and $19.9pm0.2$. The metallicity inferred from sulphur is consistent with Solar metallicity for both sightlines: $[{rm S/H}]_A = 0.0pm0.1$ and $[{rm S/H}]_B = -0.1pm0.1$. Based on the excitation of low rotational levels of H$_2$, we constrain the temperature of the cold gas phase to be $T=109pm20$ and $T=89pm25$ K for the two lines of sight. From the relative excitation of fine-structure levels of CI, we constrain the hydrogen volumetric densities in the range of $40-110$ cm$^{-3}$. Based on the ratio of observed column density and volumetric density, we infer the average individual `cloud size along the line of sight to be $lapprox0.1$ pc. Using the transverse line-of-sight separation of 0.7 kpc together with the individual cloud size, we are able to put an upper limit to the volume filling factor of cold gas of $f_{rm vol} < 0.2$ %. Nonetheless, the projected covering fraction of cold gas must be large (close to unity) over scales of a few kpc in order to explain the presence of cold gas in both lines of sight. Compared to the typical extent of DLAs (~10-30 kpc), this is consistent with the relative incidence rate of CI absorbers and DLAs.
We report the detection of CO(J=3-2) line emission in the strongly-lensed submillimeter galaxy (SMG) SMM J0939+8315 at z=2.221, using the Combined Array for Research in Millimeter-wave Astronomy. SMM J0939+8315 hosts a type-2 quasar, and is gravitationally lensed by the radio galaxy 3C220.3 and its companion galaxy at z=0.685. The 104 GHz continuum emission underlying the CO line is detected toward 3C220.3 with an integrated flux density of S_cont = 7.4 +/- 1.4 mJy. Using the CO(J=3-2) line intensity of I_(CO(3-2)) = (12.6 +/- 2.0) Jy km s^-1, we derive a lensing- and excitation-corrected CO line luminosity of L(CO(3-2)) = (3.4 +/- 0.7) x 10^10 (10.1/mu_L) K km s^-1 pc^2 for the SMG, where mu_L is the lensing magnification factor inferred from our lens modeling. This translates to a molecular gas mass of M_gas = (2.7 +/- 0.6) x 10^10 (10.1/mu_L) Msun. Fitting spectral energy distribution models to the (sub)-millimeter data of this SMG yields a dust temperature of T = 63.1^{+1.1}_{-1.3} K, a dust mass of M_dust = (5.2 +/- 2.1) x 10^8 (10.1/mu_L) Msun, and a total infrared luminosity of L_IR = (9.1 +/- 1.2) x 10^12 (10.1/mu_L) Lsun. We find that the properties of the interstellar medium of SMM J0939+8315 overlap with both SMGs and type-2 quasars. Hence, SMM J0939+8315 may be transitioning from a star-bursting phase to an unobscured quasar phase as described by the evolutionary link model, according to which this system may represent an intermediate stage in the evolution of present-day galaxies at an earlier epoch.
We report the discovery of a cluster-scale lensed quasar, SDSS J1029+2623, selected from the Sloan Digital Sky Survey. The lens system exhibits two lensed images of a quasar at z_s=2.197. The image separation of 22.5 makes it the largest separation lensed quasar discovered to date. The similarity of the optical spectra and the radio loudnesses of the two components support the lensing hypothesis. Images of the field show a cluster of galaxies at z_l~0.55 that is responsible for the large image separation. The lensed images and the cluster light center are not collinear, which implies that the lensing cluster has a complex structure.
77 - N. Inada , M. Oguri , B. Pindor 2003
Gravitational lensing is a powerful tool for the study of the distribution of dark matter in the Universe. The cold-dark-matter model of the formation of large-scale structures predicts the existence of quasars gravitationally lensed by concentrations of dark matter so massive that the quasar images would be split by over 7 arcsec. Numerous searches for large-separation lensed quasars have, however, been unsuccessful. All of the roughly 70 lensed quasars known, including the first lensed quasar discovered, have smaller separations that can be explained in terms of galaxy-scale concentrations of baryonic matter. Although gravitationally lensed galaxies with large separations are known, quasars are more useful cosmological probes because of the simplicity of the resulting lens systems. Here we report the discovery of a lensed quasar, SDSS J1004+4112, which has a maximum separation between the components of 14.62 arcsec. Such a large separation means that the lensing object must be dominated by dark matter. Our results are fully consistent with theoretical expectations based on the cold-dark-matter model.
Most molecular gas studies of $z > 2.5$ galaxies are of intrinsically bright objects, despite the galaxy population being primarily normal galaxies with less extreme star formation rates. Observations of normal galaxies at high redshift provide a more representative view of galaxy evolution and star formation, but such observations are challenging to obtain. In this work, we present ALMA $rm ^{12}CO(J = 3 rightarrow 2)$ observations of a sub-millimeter selected galaxy group at $z = 2.9$, resulting in spectroscopic confirmation of seven images from four member galaxies. These galaxies are strongly lensed by the MS 0451.6-0305 foreground cluster at $z = 0.55$, allowing us to probe the molecular gas content on levels of $rm 10^9-10^{10} ; M_odot$. Four detected galaxies have molecular gas masses of $rm (0.2-13.1) times 10^{10} ; M_odot$, and the non-detected galaxies have inferred molecular gas masses of $rm < 8.0 times 10^{10} ; M_odot$. We compare these new data to a compilation of 546 galaxies up to $z = 5.3$, and find that depletion times decrease with increasing redshift. We then compare the depletion times of galaxies in overdense environments to the field scaling relation from the literature, and find that the depletion time evolution is steeper for galaxies in overdense environments than for those in the field. More molecular gas measurements of normal galaxies in overdense environments at higher redshifts ($z > 2.5$) are needed to verify the environmental dependence of star formation and gas depletion.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا