Do you want to publish a course? Click here

Some Donaldson invariants of CP^2

50   0   0.0 ( 0 )
 Added by Stein A. Stromme
 Publication date 1995
  fields
and research's language is English




Ask ChatGPT about the research

We compute the Donaldson numbers $q_{17}(CP^2)=2540$ and $q_{21}(CP^2)=233208$.



rate research

Read More

We present some computations of higher rank refined Donaldson-Thomas invariants on local curve geometries, corresponding to local D6-D2-D0 or D4-D2-D0 configurations. A refined wall-crossing formula for invariants with higher D6 or D4 ranks is derived and verified to agree with the existing formulas under the unrefined limit. Using the formula, refined invariants on the $(-1,-1)$ and $(-2,0)$ local rational curve with higher D6 or D4 ranks are computed.
160 - Kentaro Nagao 2010
We study higher rank Donaldson-Thomas invariants of a Calabi-Yau 3-fold using Joyce-Songs wall-crossing formula. We construct quivers whose counting invariants coincide with the Donaldson-Thomas invariants. As a corollary, we prove the integrality and a certain symmetry for the higher rank invariants.
187 - Kentaro Nagao 2011
We study motivic Donaldson-Thomas invariants in the sense of Behrend-Bryan-Szendroi. A wall-crossing formula under a mutation is proved for a certain class of quivers with potentials.
We compute the motivic Donaldson-Thomas theory of small crepant resolutions of toric Calabi-Yau 3-folds.
82 - Yalong Cao , Martijn Kool 2017
We study Hilbert schemes of points on a smooth projective Calabi-Yau 4-fold $X$. We define $mathrm{DT}_4$ invariants by integrating the Euler class of a tautological vector bundle $L^{[n]}$ against the virtual class. We conjecture a formula for their generating series, which we prove in certain cases when $L$ corresponds to a smooth divisor on $X$. A parallel equivariant conjecture for toric Calabi-Yau 4-folds is proposed. This conjecture is proved for smooth toric divisors and verified for more general toric divisors in many examples. Combining the equivariant conjecture with a vertex calculation, we find explicit positive rational weights, which can be assigned to solid partitions. The weighted generating function of solid partitions is given by $exp(M(q)-1)$, where $M(q)$ denotes the MacMahon function.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا