No Arabic abstract
One-time tables are a class of two-party correlations that can help achieve information-theoretically secure two-party (interactive) classical or quantum computation. In this work we propose a bipartite quantum protocol for generating a simple type of one-time tables (the correlation in the Popescu-Rohrlich nonlocal box) with partial security. We then show that by running many instances of the first protocol and performing checks on some of them, asymptotically information-theoretically secure generation of one-time tables can be achieved. The first protocol is adapted from a protocol for semi-honest oblivious transfer, with some changes so that no entangled state needs to be prepared, and the communication involves only one qutrit in each direction. We show that some information tradeoffs in the first protocol are similar to that in the semi-honest oblivious transfer protocol. We also obtain two types of inequalities about guessing probabilities in some protocols for generating one-time tables, from a single type of inequality about guessing probabilities in semi-honest oblivious transfer protocols.
We proposed the procedure of measuring the unknown state of the three-level system - the qutrit, which was realized as the arbitrary polarization state of the single-mode biphoton field. This procedure is accomplished for the set of the pure states of qutrits; this set is defined by the properties of SU(2) transformations, that are done by the polarization transformers.
Quantum information carriers with higher dimension than the canonical qubit offer significant advantages. However, manipulating such systems is extremely difficult. We show how measurement induced non-linearities can be employed to dramatically extend the range of possible transforms on biphotonic qutrits; the three level quantum systems formed by the polarisation of two photons in the same spatio-temporal mode. We fully characterise the biphoton-photon entanglement that underpins our technique, thereby realising the first instance of qubit-qutrit entanglement. We discuss an extension of our technique to generate qutrit-qutrit entanglement and to manipulate any bosonic encoding of quantum information.
In the Bloch sphere based representation of qudits with dimensions greater than two, the Heisenberg-Weyl operator basis is not preferred because of presence of complex Bloch vector components. We try to address this issue and parametrize a qutrit using the Heisenberg-Weyl operators by identifying eight real parameters and separate them as four weight and four angular parameters each. The four weight parameters correspond to the weights in front of the four mutually unbiased bases sets formed by the eigenbases of Heisenberg-Weyl observables and they form a four-dimensional unit radius Bloch hypersphere. Inside the four-dimensional hypersphere all points do not correspond to a physical qutrit state but still it has several other features which indicate that it is a natural extension of the qubit Bloch sphere. We study the purity, rank of three level systems, orthogonality and mutual unbiasedness conditions and the distance between two qutrit states inside the hypersphere. We also analyze the two and three-dimensional sections centered at the origin which gives a close structure for physical qutrit states inside the hypersphere. Significantly, we have applied our representation to find mutually unbiased bases(MUBs) and to characterize the unital maps in three dimensions. It should also be possible to extend this idea in higher dimensions.
Coherent parity check (CPC) codes are a new framework for the construction of quantum error correction codes that encode multiple qubits per logical block. CPC codes have a canonical structure involving successive rounds of bit and phase parity checks, supplemented by cross-checks to fix the code distance. In this paper, we provide a detailed introduction to CPC codes using conventional quantum circuit notation. We demonstrate the implementation of a CPC code on real hardware, by designing a [[4,2,2]] detection code for the IBM 5Q superconducting qubit device. Whilst the individual gate-error rates on the IBM device are too high to realise a fault tolerant quantum detection code, our results show that the syndrome information from a full encode-decode cycle of the [[4,2,2]] CPC code can be used to increase the output state fidelity by post-selection. Following this, we generalise CPC codes to other quantum technologies by showing that their structure allows them to be efficiently compiled using any experimentally realistic native two-qubit gate. We introduce a three-stage CPC design process for the construction of hardware-optimised quantum memories. As a proof-of-concept example, we apply our design process to an idealised linear seven-qubit ion trap. In the first stage of the process, we use exhaustive search methods to find a large set of [[7,3,3]] codes that saturate the quantum Hamming bound for seven qubits. We then optimise over the discovered set of codes to meet the hardware and layout demands of the ion trap device. We also discuss how the CPC design process will generalise to larger-scale codes and other qubit technologies.
We outline a proposal for a method of preparing an encoded two-state system (logical qubit) that is immune to collective noise acting on the Hilbert space of the states supporting it. The logical qubit is comprised of three photonic three-state systems (qutrits) and is generated by the process of spontaneous parametric down conversion. The states are constructed using linear optical elements along with three down-conversion sources, and are deemed successful by the simultaneous detection of six events. We also show how to select a maximally entangled state of two qutrits by similar methods. For this maximally entangled state we describe conditions for the state to be decoherence-free which do not correspond to collective errors.