Do you want to publish a course? Click here

Thermopower in transition-metal perovskites

261   0   0.0 ( 0 )
 Added by Wataru Kobayashi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

High-temperature thermopower is interpreted as entropy that a carrier carries. Owing to spin and orbital degrees of freedom, a transition metal perovskite exhibits large thermopower at high temperatures. In this paper, we revisit the high-temperature thermopower in the perovskites to shed light on the degrees of freedom. Thus, we theoretically derive an expression of thermopower in one-dimensional octahedral-MX6-clusters chain using linear-response theory and electronic structure calculation of the chain based on the tight-binding approximation. The derived expression of the thermopower is consistent with the extended Heikes formula and well reproduced experimental data of several perovskite oxides at high temperatures. In this expression, a degeneracy of many electron states in octahedral ligand field (which is characterized by multiplet term) appears instead of the spin and orbital degeneracies. Complementarity in between our expression and the extended Heikes formula is discussed.



rate research

Read More

We investigate the transport properties of LixCoO2 thin films whose resistivities are nearly an order of magnitude lower than those of the bulk polycrystals. A metal-nonmetal transition occurs at ~0.8 in a biphasic domain, and the Seebeck coefficient (S) is drastically increased at ~140 K (= T*) with increasing the Li concentration to show a peak of magnitude ~120 muV/K in the S-T curve of x = 0.87. We show that T* corresponds to a crossover temperature in the conduction, most likely reflecting the correlation-induced temperature dependence in the low-energy excitations.
We construct an effective Hamiltonian for the motion of electrons among the transition metal ions of ordered double perovskites like Sr2FeMoO6. in which strong intra-atomic Coulomb repulsion U is present in only one of the inequivalent transition metal sites. Using a slave-boson formalism, we construct a phase diagram which describes a charge transfer transition between insulating and metallic behavior as the parameters of the model are changed. The parameters for Sr2FeMoO6 are estimated from first-principles calculations and a transition to the insulating state with negative pressure is obtained.
122 - A. Furrer , A. Podlesnyak , 2015
The extraction of exchange parameters from measured spin-wave dispersion relations has severe limitations particularly for magnetic compounds such as the transition-metal perovskites, where the nearest-neighbor exchange parameter usually dominates the couplings between the further-distant-neighbor spins. Very precise exchange parameters beyond the nearest-neighbor spins can be obtained by neutron spectroscopic investigations of the magnetic excitation spectra of isolated multimers in magnetically diluted compounds. This is exemplified for manganese trimers in the mixed three- and two-dimensional perovskite compounds KMnxZn1-xF3 and K2MnxZn1-xF4, respectively. It is shown that the small exchange couplings between the second-nearest and the third-nearest neighboring spins can be determined unambiguously and with equal precision as the dominating nearest-neighbor exchange coupling.
We report on a Ni L$_{2,3}$ edges x-ray absorption spectroscopy (XAS) study in $R$NiO$_3$ perovskites. These compounds exhibit a metal to insulator ($MI$) transition as temperature decreases. The L$_{3}$ edge presents a clear splitting in the insulating state, associated to a less hybridized ground state. Using charge transfer multiplet calculations, we establish the importance of the crystal field and 3d spin-orbit coupling to create a mixed-spin ground state. We explain the $MI$ transition in $R$NiO$_3$ perovskites in terms of modifications in the Ni$^{3+}$ crystal field splitting that induces a spin transition from an essentially low-spin (LS) to a mixed-spin state.
The metal-insulator transition (MIT) is one of the most dramatic manifestations of electron correlations in materials. Various mechanisms producing MITs have been extensively considered, including the Mott (electron localization via Coulomb repulsion), Anderson (localization via disorder) and Peierls (localization via distortion of a periodic 1D lattice). One additional route to a MIT proposed by Slater, in which long-range magnetic order in a three dimensional system drives the MIT, has received relatively little attention. Using neutron and X-ray scattering we show that the MIT in NaOsO3 is coincident with the onset of long-range commensurate three dimensional magnetic order. Whilst candidate materials have been suggested, our experimental methodology allows the first definitive demonstration of the long predicted Slater MIT. We discuss our results in the light of recent reports of a Mott spin-orbit insulating state in other 5d oxides.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا