No Arabic abstract
In constrained solution spaces with a huge number of homotopy classes, stand-alone sampling-based kinodynamic planners suffer low efficiency in convergence. Local optimization is integrated to alleviate this problem. In this paper, we propose to thrive the trajectory tree growing by optimizing the tree in the forms of deformation units, and each unit contains one tree node and all the edges connecting it. The deformation proceeds both spatially and temporally by optimizing the node state and edge time durations efficiently. The unit only changes the tree locally yet improves the overall quality of a corresponding sub-tree. Further, variants to deform different tree parts considering the computation burden and optimizing level are studied and compared, all showing much faster convergence. The proposed deformation is compatible with different RRT-based kinodynamic planning methods, and numerical experiments show that integrating the spatio-temporal deformation greatly accelerates the convergence and outperforms the spatial-only deformation.
In this paper, we propose Belief Behavior Trees (BBTs), an extension to Behavior Trees (BTs) that allows to automatically create a policy that controls a robot in partially observable environments. We extend the semantic of BTs to account for the uncertainty that affects both the conditions and action nodes of the BT. The tree gets synthesized following a planning strategy for BTs proposed recently: from a set of goal conditions we iteratively select a goal and find the action, or in general the subtree, that satisfies it. Such action may have preconditions that do not hold. For those preconditions, we find an action or subtree in the same fashion. We extend this approach by including, in the planner, actions that have the purpose to reduce the uncertainty that affects the value of a condition node in the BT (for example, turning on the lights to have better lighting conditions). We demonstrate that BBTs allows task planning with non-deterministic outcomes for actions. We provide experimental validation of our approach in a real robotic scenario and - for sake of reproducibility - in a simulated one.
Long-horizon planning in realistic environments requires the ability to reason over sequential tasks in high-dimensional state spaces with complex dynamics. Classical motion planning algorithms, such as rapidly-exploring random trees, are capable of efficiently exploring large state spaces and computing long-horizon, sequential plans. However, these algorithms are generally challenged with complex, stochastic, and high-dimensional state spaces as well as in the presence of narrow passages, which naturally emerge in tasks that interact with the environment. Machine learning offers a promising solution for its ability to learn general policies that can handle complex interactions and high-dimensional observations. However, these policies are generally limited in horizon length. Our approach, Broadly-Exploring, Local-policy Trees (BELT), merges these two approaches to leverage the strengths of both through a task-conditioned, model-based tree search. BELT uses an RRT-inspired tree search to efficiently explore the state space. Locally, the exploration is guided by a task-conditioned, learned policy capable of performing general short-horizon tasks. This task space can be quite general and abstract; its only requirements are to be sampleable and to well-cover the space of useful tasks. This search is aided by a task-conditioned model that temporally extends dynamics propagation to allow long-horizon search and sequential reasoning over tasks. BELT is demonstrated experimentally to be able to plan long-horizon, sequential trajectories with a goal conditioned policy and generate plans that are robust.
In this paper, we show how a planning algorithm can be used to automatically create and update a Behavior Tree (BT), controlling a robot in a dynamic environment. The planning part of the algorithm is based on the idea of back chaining. Starting from a goal condition we iteratively select actions to achieve that goal, and if those actions have unmet preconditions, they are extended with actions to achieve them in the same way. The fact that BTs are inherently modular and reactive makes the proposed solution blend acting and planning in a way that enables the robot to efficiently react to external disturbances. If an external agent undoes an action the robot reexecutes it without re-planning, and if an external agent helps the robot, it skips the corresponding actions, again without replanning. We illustrate our approach in two different robotics scenarios.
In this work, we present a novel sampling-based path planning method, called SPRINT. The method finds solutions for high dimensional path planning problems quickly and robustly. Its efficiency comes from minimizing the number of collision check samples. This reduction in sampling relies on heuristics that predict the likelihood that samples will be useful in the search process. Specifically, heuristics (1) prioritize more promising search regions; (2) cull samples from local minima regions; and (3) steer the search away from previously observed collision states. Empirical evaluations show that our method finds shorter or comparable-length solution paths in significantly less time than commonly used methods. We demonstrate that these performance gains can be largely attributed to our approach to achieve sample efficiency.
This letter addresses the 3D coverage path planning (CPP) problem for terrain reconstruction of unknown obstacle rich environments. Due to sensing limitations, the proposed method, called CT-CPP, performs layered scanning of the 3D region to collect terrain data, where the traveling sequence is optimized using the concept of a coverage tree (CT). A modified TSP-based tree traversal strategy is proposed. The CT-CPP method is validated on a high-fidelity underwater simulator and the results are evaluated in comparison to an existing terrain following CPP method (TF-CPP). The CT-CPP with TSP optimizer yields significant improvements in trajectory length, energy consumption, and reconstruction error.