No Arabic abstract
The spatial arrangement of adsorbates deposited onto a clean surface in vacuum typically cannot be reversibly tuned. Here we use scanning tunneling microscopy to demonstrate that molecules deposited onto graphene field-effect transistors exhibit reversible, electrically-tunable surface concentration. Continuous gate-tunable control over the surface concentration of charged F4TCNQ molecules was achieved on a graphene FET at T = 4.5K. This capability enables precisely controlled impurity doping of graphene devices and also provides a new method for determining molecular energy level alignment based on the gate-dependence of molecular concentration. The gate-tunable molecular concentration can be explained by a dynamical molecular rearrangement process that reduces total electronic energy by maintaining Fermi level pinning in the device substrate. Molecular surface concentration in this case is fully determined by the device back-gate voltage, its geometric capacitance, and the energy difference between the graphene Dirac point and the molecular LUMO level.
We present an analytical device model for a graphene bilayer field-effect transistor (GBL-FET) with a graphene bilayer as a channel, and with back and top gates. The model accounts for the dependences of the electron and hole Fermi energies as well as energy gap in different sections of the channel on the bias back-gate and top-gate voltages. Using this model, we calculate the dc and ac source-drain currents and the transconductance of GBL-FETs with both ballistic and collision dominated electron transport as functions of structural parameters, the bias back-gate and top-gate voltages, and the signal frequency. It is shown that there are two threshold voltages, $V_{th,1}$ and $V_{th,2}$, so that the dc current versus the top-gate voltage relation markedly changes depending on whether the section of the channel beneath the top gate (gated section) is filled with electrons, depleted, or filled with holes. The electron scattering leads to a decrease in the dc and ac currents and transconductances, whereas it weakly affects the threshold frequency. As demonstrated, the transient recharging of the gated section by holes can pronouncedly influence the ac transconductance resulting in its nonmonotonic frequency dependence with a maximum at fairly high frequencies.
We study the effects of low-energy electron beam irradiation up to 10 keV on graphene based field effect transistors. We fabricate metallic bilayer electrodes to contact mono- and bi-layer graphene flakes on SiO$_2$, obtaining specific contact resistivity $rho_c simeq 19 kOmega mu m^2$ and carrier mobility as high as 4000 cm$^2$V$^{-1}$s$^{-1}$. By using a highly doped p-Si/SiO$_2$ substrate as back gate, we analyze the transport properties of the device and the dependence on the pressure and on the electron bombardment. We demonstrate that low energy irradiation is detrimental on the transistor current capability, resulting in an increase of the contact resistance and a reduction of the carrier mobility even at electron doses as low as 30 $e^-/nm^2$. We also show that the irradiated devices recover by returning to their pristine state after few repeated electrical measurements.
We propose use of disorder to produce a field effect transistor (FET) in biased bilayer and trilayer graphene. Modulation of the bias voltage can produce large variations in the conductance when the disorders effects are confined to only one of the graphene layers. This effect is based on the bias voltages ability to select which of the graphene layers carries current, and is not tied to the presence of a gap in the density of states. In particular, we demonstrate this effect in models of gapless ABA-stacked trilayer graphene, gapped ABC-stacked trilayer graphene, and gapped bilayer graphene.
The celebrated electronic properties of graphene have opened way for materials just one-atom-thick to be used in the post-silicon electronic era. An important milestone was the creation of heterostructures based on graphene and other two-dimensional (2D) crystals, which can be assembled in 3D stacks with atomic layer precision. These layered structures have already led to a range of fascinating physical phenomena, and also have been used in demonstrating a prototype field effect tunnelling transistor - a candidate for post-CMOS technology. The range of possible materials which could be incorporated into such stacks is very large. Indeed, there are many other materials where layers are linked by weak van der Waals forces, which can be exfoliated and combined together to create novel highly-tailored heterostructures. Here we describe a new generation of field effect vertical tunnelling transistors where 2D tungsten disulphide serves as an atomically thin barrier between two layers of either mechanically exfoliated or CVD-grown graphene. Our devices have unprecedented current modulation exceeding one million at room temperature and can also operate on transparent and flexible substrates.
We study instability of plasmons in a dual-grating-gate graphene field-effect transistor induced by dc current injection using self-consistent simulations with the Boltzmann equation. With only the acoustic-phonon-limited electron scattering, it is demonstrated that a total growth rate of the plasmon instability, with the terahertz/mid-infrared range of the frequency, can exceed $4times10^{12}$ s$^{-1}$ at room temperature, which is an order of magnitude larger than in two-dimensional electron gases based on usual semiconductors. By Comparing the simulation results with existing theory, it is revealed that the giant total growth rate originates from simulataneous occurence of the so-called Dyakonov-Shur and Ryzhii-Satou-Shur instabilities.