No Arabic abstract
Over the past two decades scientists have achieved a significant improvement of our understanding of the transport of energetic particles across a mean magnetic field. Due to test-particle simulations as well as powerful non-linear analytical tools our understanding of this type of transport is almost complete. However, previously developed non-linear analytical theories do not always agree perfectly with simulations. Therefore, a correction factor $a^2$ was incorporated into such theories with the aim to balance out inaccuracies. In this paper a new analytical theory for perpendicular transport is presented. This theory contains the previously developed unified non-linear transport theory, the most advanced theory to date, in the limit of small Kubo number turbulence. For two-dimensional turbulence new results are obtained. In this case the new theory describes perpendicular diffusion as a process which is sub-diffusive while particles follow magnetic field lines. Diffusion is restored as soon as the turbulence transverse complexity becomes important. For long parallel mean free paths one finds that the perpendicular diffusion coefficient is a reduced field line random walk limit. For short parallel mean free paths, on the other hand, one gets a hybrid diffusion coefficient which is a mixture of collisionless Rechester & Rosenbluth and fluid limits. Overall the new analytical theory developed in the current paper is in agreement with heuristic arguments. Furthermore, the new theory agrees almost perfectly with previously performed test-particle simulations without the need of the aforementioned correction factor $a^2$ or any other free parameter.
It is very important to understand stochastic diffusion of energetic charged particles in non-uniform background magnetic field in plasmas of astrophysics and fusion devices. Using different methods considering along-field adiabatic focusing effect, various authors derived parallel diffusion coefficient $kappa_parallel$ and its correction $T$ to $kappa_{parallel 0}$, where $kappa_{parallel 0}$ is the parallel diffusion coefficient without adiabatic focusing effect. In this paper, using the improved perturbation method developed by He & Schlickeiser and iteration process, we obtain a new correction $T$ to $kappa_{parallel 0}$. Furthermore, by employing the isotropic pitch-angle scattering model $D_{mumu}=D(1-mu^2)$, we find that $T$ has the different sign as that of $T$. In this paper the spatial perpendicular diffusion coefficient $kappa_bot$ with the adiabatic focusing effect is also obtained.
The processes responsible for the effective longitudinal transport of solar energetic particles (SEPs) are still not completely understood. We address this issue by simulating SEP electron propagation using a spatially 2D transport model that includes perpendicular diffusion. By implementing, as far as possible, the most reasonable estimates of the transport (diffusion) coefficients, we compare our results, in a qualitative manner, to recent observations {at energies of 55 -- 105 keV}, focusing on the longitudinal distribution of the peak intensity, the maximum anisotropy and the onset time. By using transport coefficients which are derived from first principles, we limit the number of free parameters in the model to: (i) the probability of SEPs following diffusing magnetic field lines, quantified by $a in [0,1]$, and (ii) the broadness of the Gaussian injection function. It is found that the model solutions are extremely sensitive to the magnitude of the {perpendicular} diffusion coefficient and relatively insensitive to the form of the injection function as long as a reasonable value of $a=0.2$ is used. We illustrate the effects of perpendicular diffusion on the model solutions and discuss the viability of this process as a dominant mechanism by which SEPs are transported in longitude. Lastly, we try to quantity the effectiveness of perpendicular diffusion as an interplay between the magnitude of the relevant diffusion coefficient and the SEP intensity gradient driving the diffusion process. It follows that perpendicular diffusion is extremely effective early in a SEP event when large intensity gradients are present, while the effectiveness quickly decreases with time thereafter.
A general theory of the onset and development of the plasmoid instability is formulated by means of a principle of least time. The scaling relations for the final aspect ratio, transition time to rapid onset, growth rate, and number of plasmoids are derived, and shown to depend on the initial perturbation amplitude $left({hat w}_0right)$, the characteristic rate of current sheet evolution $left(1/tauright)$, and the Lundquist number $left(Sright)$. They are not simple power laws, and are proportional to $S^{alpha} tau^{beta} left[ln f(S,tau,{hat w}_0)right]^sigma$. The detailed dynamics of the instability is also elucidated, and shown to comprise of a period of quiescence followed by sudden growth over a short time scale.
We calculate the mean free path in a hot and dense nuclear environment for a fermionic dark matter particle candidate in the $sim$GeV mass range interacting with nucleons via scalar and vector effective couplings. We focus on the effects of density and temperature in the nuclear medium in order to evaluate the importance of the final state blocking in the scattering process. We discuss qualitatively possible implications for opacities in stellar nuclear scenarios, where dark matter may be gravitationally accreted.
A new physical phenomenon is identified: volumetric stellar emission into gravitationally bound orbits of weakly coupled particles such as axions, moduli, hidden photons, and neutrinos. While only a tiny fraction of the instantaneous luminosity of a star (the vast majority of the emission is into relativistic modes), the continual injection of these particles into a small part of phase space causes them to accumulate over astrophysically long time scales, forming what I call a stellar basin, in analogy with the geologic kind. The energy density of the Solar basin will surpass that of the relativistic Solar flux at Earths location after only a million years, for any sufficiently long-lived particle produced through an emission process whose matrix elements are unsuppressed at low momentum. This observation has immediate and striking consequences for direct detection experiments---including new limits on axion parameter space independent of dark matter assumptions---and may also increase the prospects for indirect detection of weakly interacting particles around compact stars.