Do you want to publish a course? Click here

Asymptotic growth of Mordell-Weil ranks of elliptic curves in noncommutative towers

159   0   0.0 ( 0 )
 Added by Anwesh Ray
 Publication date 2021
  fields
and research's language is English
 Authors Anwesh Ray




Ask ChatGPT about the research

Let $E$ be an elliptic curve defined over a number field $F$ with good ordinary reduction at all primes above $p$, and let $F_infty$ be a finitely ramified uniform pro-$p$ extension of $F$ containing the cyclotomic $mathbb{Z}_p$-extension $F_{cyc}$. Set $F^{(n)}$ be the $n$-th layer of the tower, and $F^{(n)}_{cyc}$ the cyclotomic $mathbb{Z}_p$-extension of $F^{(n)}$. We study the growth of the rank of $E(F^{(n)})$ by analyzing the growth of the $lambda$-invariant of the Selmer group over $F^{(n)}_{cyc}$ as $nrightarrow infty$. This method has its origins in work of A.Cuoco, who studied $mathbb{Z}_p^2$-extensions. Refined estimates for growth are proved that are close to conjectured estimates. The results are illustrated in special cases.



rate research

Read More

93 - Soohyun Park 2017
We use methods for computing Picard numbers of reductions of K3 surfaces in order to study the decomposability of Jacobians over number fields and the variance of Mordell-Weil ranks of families of Jacobians over different ground fields. For example, we give examples of surfaces whose Picard numbers jump in rank at all primes of good reduction using Mordell-Weil groups of Jacobians and show that the genus of curves over number fields whose Jacobians are isomorphic to a product of elliptic curves satisfying certain reduction conditions is bounded. The isomorphism result addresses the number field analogue of some questions of Ekedahl and Serre on decomposability of Jacobians of curves into elliptic curves.
Let $X$ be a curve of genus $ggeq 2$ over a number field $F$ of degree $d = [F:Q]$. The conjectural existence of a uniform bound $N(g,d)$ on the number $#X(F)$ of $F$-rational points of $X$ is an outstanding open problem in arithmetic geometry, known by [CHM97] to follow from the Bombieri--Lang conjecture. A related conjecture posits the existence of a uniform bound $N_{{rm tors},dagger}(g,d)$ on the number of geometric torsion points of the Jacobian $J$ of $X$ which lie on the image of $X$ under an Abel--Jacobi map. For fixed $X$ this quantity was conjectured to be finite by Manin--Mumford, and was proved to be so by Raynaud [Ray83]. We give an explicit uniform bound on $#X(F)$ when $X$ has Mordell--Weil rank $rleq g-3$. This generalizes recent work of Stoll on uniform bounds on hyperelliptic curves of small rank to arbitrary curves. Using the same techniques, we give an explicit, unconditional uniform bound on the number of $F$-rational torsion points of $J$ lying on the image of $X$ under an Abel--Jacobi map. We also give an explicit uniform bound on the number of geometric torsion points of $J$ lying on $X$ when the reduction type of $X$ is highly degenerate. Our methods combine Chabauty--Colemans $p$-adic integration, non-Archimedean potential theory on Berkovich curves, and the theory of linear systems and divisors on metric graphs.
We compute characteristic numbers of elliptically fibered fourfolds with multisections or non-trivial Mordell-Weil groups. We first consider the models of type E$_{9-d}$ with $d=1,2,3,4$ whose generic fibers are normal elliptic curves of degree $d$. We then analyze the characteristic numbers of the $Q_7$-model, which provides a smooth model for elliptic fibrations of rank one and generalizes the E$_5$, E$_6$, and E$_7$-models. Finally, we examine the characteristic numbers of $G$-models with $G=text{SO}(n)$ with $n=3,4,5,6$ and $G=text{PSU}(3)$ whose Mordell-Weil groups are respectively $mathbb{Z}/2mathbb{Z}$ and $mathbb{Z}/3 mathbb{Z}$. In each case, we compute the Chern and Pontryagin numbers, the Euler characteristic, the holomorphic genera, the Todd-genus, the L-genus, the A-genus, and the eight-form curvature invariant from M-theory.
We consider an abelian variety defined over a number field. We give conditional bounds for the order of its Tate-Shafarevich group, as well as conditional bounds for the Neron-Tate height of generators of its Mordell-Weil group. The bounds are implied by strong but nowadays classical conjectures, such as the Birch and Swinnerton-Dyer conjecture and the functional equation of the L-series. In particular, we improve and generalise a result by D. Goldfeld and L. Szpiro on the order of the Tate-Shafarevich group, and extends a conjecture of S. Lang on the canonical height of a system of generators of the free part of the Mordell-Weil group. The method is an extension of the algorithm proposed by Yu. Manin for finding a basis for the non-torsion rational points of an elliptic curve defined over the rationals.
In this paper, we classify torsion groups of rational Mordell curves explicitly over cubic fields as well as over sextic fields. Also, we classify torsion groups of Mordell curves over cubic fields and for Mordell curves over sextic fields, we produce all possible torsion groups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا