We use a novel form of quantum conditional probability to define new measures of quantum information in a dynamical context. We explore relationships between our new quantities and standard measures of quantum information such as von Neumann entropy. These quantities allow us to find new proofs of some standard results in quantum information theory, such as the concavity of von Neumann entropy and Holevos theorem. The existence of an underlying probability distribution helps to shed some light on the conceptual underpinnings of these results.
We show that including both the system and the apparatus in the quantum description of the measurement process, and using the concept of conditional probabilities, it is possible to deduce the statistical operator of the system after a measurement with a given result, which gives the probability distribution for all possible consecutive measurements on the system. This statistical operator, representing the state of the system after the first measurement, is in general not the same that would be obtained using the postulate of collapse.
Considering a minimal number of assumptions and in the context of the timeless formalism, we derive conditional probabilities for subsequent measurements in the non-relativistic regime. Only unitary transformations are considered with detection processes described by generalized measurements (POVM). One-time conditional probabilities are univocally and unambiguous derived via the Gleason-Bush theorem, also in puzzling cases like the Wigners friend scenario where their form underlines the relativity aspect of measurements. No paradoxical situations emerge and the roles of Wigner and the friend are completely interchangeable. In particular, Wigner can be seen as a superimposed of states from his/her friend.
We analyze the geometry of a joint distribution over a set of discrete random variables. We briefly review Shannons entropy, conditional entropy, mutual information and conditional mutual information. We review the entropic information distance formula of Rokhlin and Rajski. We then define an analogous information area. We motivate this definition and discuss its properties. We extend this definition to higher-dimensional volumes. We briefly discuss the potential utility for these geometric measures in quantum information processing.
We analyze and show experimental results of the conditional purity, the quantum discord and other related measures of quantum correlation in mixed two-qubit states constructed from a pair of photons in identical polarization states. The considered states are relevant for the description of spin pair states in interacting spin chains in a transverse magnetic field. We derive clean analytical expressions for the conditional local purity and other correlation measures obtained as a result of a remote local projective measurement, which are fully verified by the experimental results. A simple exact expression for the quantum discord of these states in terms of the maximum conditional purity is also derived.
We study the relation between the quantum conditional mutual information and the quantum $alpha$-Renyi divergences. Considering the totally antisymmetric state we show that it is not possible to attain a proper generalization of the quantum conditional mutual information by optimizing the distance in terms of quantum $alpha$-Renyi divergences over the set of all Markov states. The failure of the approach considered arises from the observation that a small quantum conditional mutual information does not imply that the state is close to a quantum Markov state.