In this paper we present a general scheme for how to relate differential equations for the recurrence coefficients of semi-classical orthogonal polynomials to the Painleve equations using the geometric framework of Okamotos space of initial values. We demonstrate this procedure in two examples. For semi-classical Laguerre polynomials appearing in [HC17], we show how the recurrence coefficients are connected to the fourth Painleve equation. For discrete orthogonal polynomials associated with the hypergeometric weight appearing in [FVA18] we discuss the relation of the recurrence coefficients to the sixth Painleve equation. In addition to demonstrating the general scheme, these results supplement previous studies [DFS20, HFC20], and we also discuss a number of related topics in the context of the geometric approach, such as Hamiltonian forms of the differential equations for the recurrence coefficients, Riccati solutions for special parameter values, and associated discrete Painleve equations.