No Arabic abstract
We study the nature of many-body eigenstates of a system of interacting chiral spinless fermions on a ring. We find a coexistence of fermionic and bosonic types of eigenstates in parts of the many-body spectrum. Some bosonic eigenstates, native to the strong interaction limit, persist at intermediate and weak couplings, enabling persistent density oscillations in the system, despite it being far from integrability.
We demonstrate that the plasmon in one-dimensional Coulomb interacting electron fluids can develop a finite-momentum maxon-roton-like nonmonotonic energy-momentum dispersion. Such an unusual nonmonotonicity arises from the strongly interacting $1/r$ Coulomb potential going beyond the conventional band linearization approximation used in the standard bosonization theories of Luttinger liquids. We provide details for the nonmonotonic plasmon dispersion using both bosonization and RPA theories. We also calculate the specific heat including the nonmonotonicity and discuss possibilities for observing the nonmonotonic plasmon dispersion in various physical systems including semiconductor quantum wires, carbon nanotubes, and the twisted bilayer graphene at sub-degree twist angles, which naturally realize one-dimensional domain-wall states.
We present a variational density matrix approach to the thermal properties of interacting fermions in the continuum. The variational density matrix is parametrized by a permutation equivariant many-body unitary transformation together with a discrete probabilistic model. The unitary transformation is implemented as a quantum counterpart of neural canonical transformation, which incorporates correlation effects via a flow of fermion coordinates. As the first application, we study electrons in a two-dimensional quantum dot with an interaction-induced crossover from Fermi liquid to Wigner molecule. The present approach provides accurate results in the low-temperature regime, where conventional quantum Monte Carlo methods face severe difficulties due to the fermion sign problem. The approach is general and flexible for further extensions, thus holds the promise to deliver new physical results on strongly correlated fermions in the context of ultracold quantum gases, condensed matter, and warm dense matter physics.
Boundaries constitute a rich playground for quantum many-body systems because they can lead to novel degrees of freedom such as protected boundary states in topological phases. Here, we study the groundstate of integer quantum Hall systems in the presence of boundaries through the reduced density matrix of a spatial region. We work in the lowest Landau level and choose our region to intersect the boundary at arbitrary angles. The entanglement entropy (EE) contains a logarithmic contribution coming from the chiral edge modes, and matches the corresponding conformal field theory prediction. We uncover an additional contribution due to the boundary corners. We characterize the angle-dependence of this boundary corner term, and compare it to the bulk corner EE. We further analyze the spatial structure of entanglement via the eigenstates associated with the reduced density matrix, and construct a spatially-resolved EE. The influence of the physical boundary and the regions geometry on the reduced density matrix is thus clarified. Finally, we discuss the implications of our findings for other topological phases, as well as quantum critical systems such as conformal field theories in 2 spatial dimensions.
Central spin models describe a variety of quantum systems in which a spin-1/2 qubit interacts with a bath of surrounding spins, as realized in quantum dots and defect centers in diamond. We show that the fully anisotropic central spin Hamiltonian with (XX) Heisenberg interactions is integrable. Building on the class of integrable Richardson-Gaudin models, we derive an extensive set of conserved quantities and obtain the exact eigenstates using the Bethe ansatz. These states divide into two exponentially large classes: bright states, where the qubit is entangled with the bath, and dark states, where it is not. We discuss how dark states limit qubit-assisted spin bath polarization and provide a robust long-lived quantum memory for qubit states.
Applying a unified approach, we study integer quantum Hall effect (IQHE) and fractional quantum Hall effect (FQHE) in the Hofstadter model with short range interaction between fermions. An effective field, that takes into account the interaction, is determined by both the amplitude and phase. Its amplitude is proportional to the interaction strength, the phase corresponds to the minimum energy. In fact the problem is reduced to the Harper equation with two different scales: the first is a magnetic scale (cell size corresponding to a unit quantum magnetic flux), the second scale (determines the inhomogeneity of the effective field) forms the steady fine structure of the Hofstadter spectrum and leads to the realization of fractional quantum Hall states. In a sample of finite sizes with open boundary conditions, the fine structure of the Hofstadter spectrum also includes the fine structure of the edge chiral modes. The subbands in a fine structure of the Hofstadter band (HB) are separated extremely small quasigaps. The Chern number of a topological HB is conserved during the formation of its fine structure. Edge modes are formed into HB, they connect the nearest-neighbor subbands and determine the fractional conductance for the fractional filling at the Fermi energies corresponding to these quasigaps.