Do you want to publish a course? Click here

Improvement of Geant4 Neutron-HP package: from methodology to evaluated nuclear data library

135   0   0.0 ( 0 )
 Added by Eric Dumonteil
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

An accurate description of interactions between thermal neutrons (below 4 eV) and materials is key to simulate the transport of neutrons in a wide range of applications such as criticality-safety, reactor physics, compact accelerator-driven neutron sources, radiological shielding or nuclear instrumentation, just to name a few. While the Monte Carlo transport code Geant4 was initially developed to simulate particle physics experiments, %-with a large emphasis given on modeled cross-sections for all known particles at all conceivable energies-, its use has spread to neutronics applications, requiring evaluated cross-sections for neutrons and gammas between $0$ and $20$ MeV (the so-called neutron High Precision -HP- package), as well as a proper offline or on-the-flight treatment of these cross-sections. In this paper we will point out limitations affecting Geant4 (version 10.07.p01) thermal neutron treatment and associated nuclear data libraries, by using comparisons with the reference Monte Carlo neutron transport code tripoli, version 11, and we will present the results of various modifications of the Geant4 neutron-HP package, required to overcome these limitations. Also, in order to broaden the support of nuclear data libraries compatible with Geant4, a nuclear processing tool has been developed and validated allowing the use of the code together with ENDF-BVIII.0 and JEFF-3.3 libraries for example. These changes should be taken into account in an upcoming Geant4 release.



rate research

Read More

Neutron reaction data for the set of major chromium isotopes were reevaluated from the thermal energy range up to 20 MeV. In the low energy region, updates to the thermal values together with an improved $R$-matrix analysis of the resonance parameters characterizing the cluster of large $s$-wave resonances for $^{50,53}$Cr isotopes were performed. In the intermediate and high energy range up to 20 MeV, the evaluation methodology used statistical nuclear reaction models implemented in the EMPIRE code within the Hauser-Feshbach framework to evaluate the reaction cross sections and angular distributions. Exceptionally, experimental data were used to evaluate relevant cross sections above the resonance region up to 5 MeV in the major $^{52}$Cr isotope. Evaluations were benchmarked with Monte Carlo simulations of a small suite of critical assemblies highly sensitive to Chromium data, and with the Oktavian shielding benchmark to judge deep penetration performance with a 14-MeV D-T neutron source. A significant improvement in performance is demonstrated compared to existing evaluations.
143 - S. Zhanga , Z. Chen , Y. Nie 2014
Integral neutronics experiments have been investigated at Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS) in order to validate evaluated nuclear data related to the design of Chinese Initiative Accelerator Driven Systems (CIADS). In present paper, the accuracy of evaluated nuclear data for Tungsten has been examined by comparing measured leakage neutron spectra with calculated ones. Leakage neutron spectra from the irradiation of D-T neutrons on Tungsten slab sample were experimentally measured at 60$^{circ}$ and 120$^{circ}$ by using a time-of-flight method. Theoretical calculations are carried out by Monte Carlo neutron transport code MCNP-4C with evaluated nuclear data of the ADS-2.0, ENDF/B-VII.0, ENDF/B-VII.1, JENDL-4.0 and CENDL-3.1 libraries. From the comparisons, it is found that the calculations with ADS-2.0 and ENDF/B-VII.1 give good agreements with the experiments in the whole energy regions at 60$^{circ}$, while a large discrepancy is observed at 120$^{circ}$ in the elastic scattering peak, caused by a slight difference in the oscillation pattern of the elastic angular distribution at angles larger than 20$^{circ}$. However, the calculated spectra using data from ENDF/B-VII.0, JENDL-4.0 and CENDL-3.1 libraries showed larger discrepancies with the measured ones, especially around 8.5-13.5 MeV. Further studies are presented for these disagreements.
154 - M. Batic , M. Begalli , M. Han 2012
Ongoing investigations for the improvement of Geant4 accuracy and computational performance resulting by refactoring and reengineering parts of the code are discussed. Issues in refactoring that are specific to the domain of physics simulation are identified and their impact is elucidated. Preliminary quantitative results are reported.
Radioactive decays are of concern in a wide variety of applications using Monte-Carlo simulations. In order to properly estimate the quality of such simulations, knowledge of the accuracy of the decay simulation is required. We present a validation of the original Geant4 Radioactive Decay Module, which uses a per-decay sampling approach, and of an extended package for Geant4-based simulation of radioactive decays, which, in addition to being able to use a refactored per-decay sampling, is capable of using a statistical sampling approach. The validation is based on measurements of calibration isotope sources using a high purity Germanium (HPGe) detector; no calibration of the simulation is performed. For the considered validation experiment equivalent simulation accuracy can be achieved with per-decay and statistical sampling.
This report is an outcome of the workshop AI for Nuclear Physics held at Thomas Jefferson National Accelerator Facility on March 4-6, 2020. The workshop brought together 184 scientists to explore opportunities for Nuclear Physics in the area of Artificial Intelligence. The workshop consisted of plenary talks, as well as six working groups. The report includes the workshop deliberations and additional contributions to describe prospects for using AI across Nuclear Physics research.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا