No Arabic abstract
Human motion prediction, which plays a key role in computer vision, generally requires a past motion sequence as input. However, in real applications, a complete and correct past motion sequence can be too expensive to achieve. In this paper, we propose a novel approach to predict future human motions from a much weaker condition, i.e., a single image, with mixture density networks (MDN) modeling. Contrary to most existing deep human motion prediction approaches, the multimodal nature of MDN enables the generation of diverse future motion hypotheses, which well compensates for the strong stochastic ambiguity aggregated by the single input and human motion uncertainty. In designing the loss function, we further introduce an energy-based prior over learnable parameters of MDN to maintain motion coherence, as well as improve the prediction accuracy. Our trained model directly takes an image as input and generates multiple plausible motions that satisfy the given condition. Extensive experiments on two standard benchmark datasets demonstrate the effectiveness of our method, in terms of prediction diversity and accuracy.
We propose NormalGAN, a fast adversarial learning-based method to reconstruct the complete and detailed 3D human from a single RGB-D image. Given a single front-view RGB-D image, NormalGAN performs two steps: front-view RGB-D rectification and back-view RGBD inference. The final model was then generated by simply combining the front-view and back-view RGB-D information. However, inferring backview RGB-D image with high-quality geometric details and plausible texture is not trivial. Our key observation is: Normal maps generally encode much more information of 3D surface details than RGB and depth images. Therefore, learning geometric details from normal maps is superior than other representations. In NormalGAN, an adversarial learning framework conditioned by normal maps is introduced, which is used to not only improve the front-view depth denoising performance, but also infer the back-view depth image with surprisingly geometric details. Moreover, for texture recovery, we remove shading information from the front-view RGB image based on the refined normal map, which further improves the quality of the back-view color inference. Results and experiments on both testing data set and real captured data demonstrate the superior performance of our approach. Given a consumer RGB-D sensor, NormalGAN can generate the complete and detailed 3D human reconstruction results in 20 fps, which further enables convenient interactive experiences in telepresence, AR/VR and gaming scenarios.
We propose DeepHuman, an image-guided volume-to-volume translation CNN for 3D human reconstruction from a single RGB image. To reduce the ambiguities associated with the surface geometry reconstruction, even for the reconstruction of invisible areas, we propose and leverage a dense semantic representation generated from SMPL model as an additional input. One key feature of our network is that it fuses different scales of image features into the 3D space through volumetric feature transformation, which helps to recover accurate surface geometry. The visible surface details are further refined through a normal refinement network, which can be concatenated with the volume generation network using our proposed volumetric normal projection layer. We also contribute THuman, a 3D real-world human model dataset containing about 7000 models. The network is trained using training data generated from the dataset. Overall, due to the specific design of our network and the diversity in our dataset, our method enables 3D human model estimation given only a single image and outperforms state-of-the-art approaches.
Recent image-to-image (I2I) translation algorithms focus on learning the mapping from a source to a target domain. However, the continuous translation problem that synthesizes intermediate results between two domains has not been well-studied in the literature. Generating a smooth sequence of intermediate results bridges the gap of two different domains, facilitating the morphing effect across domains. Existing I2I approaches are limited to either intra-domain or deterministic inter-domain continuous translation. In this work, we present an effectively signed attribute vector, which enables continuous translation on diverse mapping paths across various domains. In particular, we introduce a unified attribute space shared by all domains that utilize the sign operation to encode the domain information, thereby allowing the interpolation on attribute vectors of different domains. To enhance the visual quality of continuous translation results, we generate a trajectory between two sign-symmetrical attribute vectors and leverage the domain information of the interpolated results along the trajectory for adversarial training. We evaluate the proposed method on a wide range of I2I translation tasks. Both qualitative and quantitative results demonstrate that the proposed framework generates more high-quality continuous translation results against the state-of-the-art methods.
In this paper, we propose a method to obtain a compact and accurate 3D wireframe representation from a single image by effectively exploiting global structural regularities. Our method trains a convolutional neural network to simultaneously detect salient junctions and straight lines, as well as predict their 3D depth and vanishing points. Compared with the state-of-the-art learning-based wireframe detection methods, our network is simpler and more unified, leading to better 2D wireframe detection. With global structural priors from parallelism, our method further reconstructs a full 3D wireframe model, a compact vector representation suitable for a variety of high-level vision tasks such as AR and CAD. We conduct extensive evaluations on a large synthetic dataset of urban scenes as well as real images. Our code and datasets have been made public at https://github.com/zhou13/shapeunity.
Despite significant progress in monocular depth estimation in the wild, recent state-of-the-art methods cannot be used to recover accurate 3D scene shape due to an unknown depth shift induced by shift-invariant reconstruction losses used in mixed-data depth prediction training, and possible unknown camera focal length. We investigate this problem in detail, and propose a two-stage framework that first predicts depth up to an unknown scale and shift from a single monocular image, and then use 3D point cloud encoders to predict the missing depth shift and focal length that allow us to recover a realistic 3D scene shape. In addition, we propose an image-level normalized regression loss and a normal-based geometry loss to enhance depth prediction models trained on mixed datasets. We test our depth model on nine unseen datasets and achieve state-of-the-art performance on zero-shot dataset generalization. Code is available at: https://git.io/Depth