No Arabic abstract
The II-IV-N$_2$ class of heterovalent ternary nitrides have gained significant interest as alternatives to the III-nitrides for electronic and optoelectronic applications. In this study, we apply first-principles calculations based on density functional theory to systematically investigate the effects of structural distortions due to cation size mismatch on the configurational disorder of the cation sublattice and the valence band structure in this class of materials. We find that larger size mismatch between the group-II and the group-IV cations results in stronger lattice distortions from the ideal hexagonal ratio, which in turn inhibits the propensity of these materials towards octet-rule violating cation disorder. We also demonstrate that the formation energy of a single cation antisite pair, which is fast and simple to calculate, is a strong indicator of a materials propensity towards disorder. Furthermore, the breaking of in-plane symmetry leads to a splitting of the top three valence bands at $Gamma$, which is also directly related to the magnitude of structural distortions. Our work demonstrates that the structural and functional properties of the II-IV-N$_2$ materials can be finely tuned through controllable structural distortions that stem from the choice of cations.
The electronic structure of bulk GaAs$_{1-x}$Bi$_x$ systems for different atomic configurations and Bi concentrations is calculated using density functional theory. The results show a Bi-induced splitting between the light-hole and heavy-hole bands at the $Gamma$-point. We find a good agreement between our calculated splittings and experimental data. The magnitude of the splitting strongly depends on the local arrangement of the Bi atoms but not on the uni-directional lattice constant of the supercell. The additional influence of external strain due to epitaxial growth on GaAs substrates is studied by fixing the in-plane lattice constants.
We successfully synthesized the BaPt$_2$As$_2$ single crystals and studied their structural and physical properties at low temperatures. BaPt$_2$As$_2$ crystallizes in the CaBe$_2$Ge$_2$-type tetragonal structure (P4/nmm) at room temperature and undergoes a first-order structural transition at $T_Ssimeq 275$ K, which is likely associated with a charge-density-wave (CDW) instability. BCS-type superconductivity with two subsequent transitions at $T_{c1}=1.67$K and $T_{c2}$=1.33K are observed in this compound. Thus, BaPt$_2$As$_2$ may serve as a new system for studying the interplay of superconductivity and the CDW order.
Fully understanding the properties of n-type ferromagnetic semiconductors (FMSs), complementary to the mainstream p-type ones, is a challenging goal in semiconductor spintronics because ferromagnetism in n-type FMSs is theoretically non-trivial. Soft-x-ray angle-resolved photoemission spectroscopy (SX-ARPES) is a powerful approach to examine the mechanism of carrier-induced ferromagnetism in FMSs. Here our SX-ARPES study on the prototypical n-type FMS (In,Fe)As reveals the entire band structure including the Fe-3d impurity bands (IBs) and the host InAs ones, and provides direct evidence for electron occupation of the InAs-derived conduction band (CB). A minority-spin Fe-3d IB is found to be located just below the conduction-band minimum (CBM). The IB is formed by the hybridization of the unoccupied Fe-3d states with the occupied CBM of InAs in a spin-dependent way, resulting in the large spin polarization of CB. The band structure with the IB is varied with band filling, which cannot be explained by the rigid-band picture, suggesting a unified picture for realization of carrier-induced ferromagnetism in FMS materials.
The element-specific technique of x-ray magnetic circular dichroism (XMCD) is used to directly determine the magnitude and character of the valence band orbital magnetic moments in (III,Mn)As ferromagnetic semiconductors. A distinct dichroism is observed at the As K absorption edge, yielding an As 4p orbital magnetic moment of around -0.1 Bohr magnetons per valence band hole. This is strongly influenced by strain, indicating its crucial influence on the magnetic anisotropy. The dichroism at the Ga K edge is much weaker. The K edge XMCD signals for Mn and As both have positive sign, which indicates the important contribution of Mn 4p states to the Mn K edge spectra.
The triple magnetic-transport-structural transition versus temperature in three series of 114 cobaltites - Y1-xYbxBaCo4O7, Y1-xCaxBaCo4O7 and Yb1-xCaxBaCo4O7 - has been studied using magnetic, transport and differential scanning calorimetric measurements. The effect of the size mismatch {sigma}2, due to cationic disordering at the Ln sites upon such a transition is shown for the first time in a triangular lattice. We show that increasing <rLn> has an effect of increasing TS dramatically, while the size mismatch {sigma}2 at the Ln sites decreases TS substantially. Moreover, the cationic mismatch at the Ln sites modifies the nature of the hysteretic transition by turning the sharp first order transition seen in the undoped samples into an intermix of first and second order transitions. These results are discussed on the basis of the particular nature of the high temperature form which exhibits a hexagonal close packed structure (space group: P63mc) with respect to the low temperature orthorhombic form (space group: Pbn21), the latter corresponding to a distortion of the former due to a puckering of the kagome layers.