Do you want to publish a course? Click here

DSSL: Deep Surroundings-person Separation Learning for Text-based Person Retrieval

87   0   0.0 ( 0 )
 Added by Aichun Zhu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Many previous methods on text-based person retrieval tasks are devoted to learning a latent common space mapping, with the purpose of extracting modality-invariant features from both visual and textual modality. Nevertheless, due to the complexity of high-dimensional data, the unconstrained mapping paradigms are not able to properly catch discriminative clues about the corresponding person while drop the misaligned information. Intuitively, the information contained in visual data can be divided into person information (PI) and surroundings information (SI), which are mutually exclusive from each other. To this end, we propose a novel Deep Surroundings-person Separation Learning (DSSL) model in this paper to effectively extract and match person information, and hence achieve a superior retrieval accuracy. A surroundings-person separation and fusion mechanism plays the key role to realize an accurate and effective surroundings-person separation under a mutually exclusion constraint. In order to adequately utilize multi-modal and multi-granular information for a higher retrieval accuracy, five diverse alignment paradigms are adopted. Extensive experiments are carried out to evaluate the proposed DSSL on CUHK-PEDES, which is currently the only accessible dataset for text-base person retrieval task. DSSL achieves the state-of-the-art performance on CUHK-PEDES. To properly evaluate our proposed DSSL in the real scenarios, a Real Scenarios Text-based Person Reidentification (RSTPReid) dataset is constructed to benefit future research on text-based person retrieval, which will be publicly available.



rate research

Read More

It is prohibitively expensive to annotate a large-scale video-based person re-identification (re-ID) dataset, which makes fully supervised methods inapplicable to real-world deployment. How to maximally reduce the annotation cost while retaining the re-ID performance becomes an interesting problem. In this paper, we address this problem by integrating an active learning scheme into a deep learning framework. Noticing that the truly matched tracklet-pairs, also denoted as true positives (TP), are the most informative samples for our re-ID model, we propose a sampling criterion to choose the most TP-likely tracklet-pairs for annotation. A view-aware sampling strategy considering view-specific biases is designed to facilitate candidate selection, followed by an adaptive resampling step to leave out the selected candidates that are unnecessary to annotate. Our method learns the re-ID model and updates the annotation set iteratively. The re-ID model is supervised by the tracklets pesudo labels that are initialized by treating each tracklet as a distinct class. With the gained annotations of the actively selected candidates, the tracklets pesudo labels are updated by label merging and further used to re-train our re-ID model. While being simple, the proposed method demonstrates its effectiveness on three video-based person re-ID datasets. Experimental results show that less than 3% pairwise annotations are needed for our method to reach comparable performance with the fully-supervised setting.
127 - Xingran Zhou , Siyu Huang , Bin Li 2019
This paper presents a novel method to manipulate the visual appearance (pose and attribute) of a person image according to natural language descriptions. Our method can be boiled down to two stages: 1) text guided pose generation and 2) visual appearance transferred image synthesis. In the first stage, our method infers a reasonable target human pose based on the text. In the second stage, our method synthesizes a realistic and appearance transferred person image according to the text in conjunction with the target pose. Our method extracts sufficient information from the text and establishes a mapping between the image space and the language space, making generating and editing images corresponding to the description possible. We conduct extensive experiments to reveal the effectiveness of our method, as well as using the VQA Perceptual Score as a metric for evaluating the method. It shows for the first time that we can automatically edit the person image from the natural language descriptions.
Attribute-based person search is in significant demand for applications where no detected query images are available, such as identifying a criminal from witness. However, the task itself is quite challenging because there is a huge modality gap between images and physical descriptions of attributes. Often, there may also be a large number of unseen categories (attribute combinations). The current state-of-the-art methods either focus on learning better cross-modal embeddings by mining only seen data, or they explicitly use generative adversarial networks (GANs) to synthesize unseen features. The former tends to produce poor embeddings due to insufficient data, while the latter does not preserve intra-class compactness during generation. In this paper, we present a symbiotic adversarial learning framework, called SAL.Two GANs sit at the base of the framework in a symbiotic learning scheme: one synthesizes features of unseen classes/categories, while the other optimizes the embedding and performs the cross-modal alignment on the common embedding space .Specifically, two different types of generative adversarial networks learn collaboratively throughout the training process and the interactions between the two mutually benefit each other. Extensive evaluations show SALs superiority over nine state-of-the-art methods with two challenging pedestrian benchmarks, PETA and Market-1501. The code is publicly available at: https://github.com/ycao5602/SAL .
Visual attention has proven to be effective in improving the performance of person re-identification. Most existing methods apply visual attention heuristically by learning an additional attention map to re-weight the feature maps for person re-identification. However, this kind of methods inevitably increase the model complexity and inference time. In this paper, we propose to incorporate the attention learning as additional objectives in a person ReID network without changing the original structure, thus maintain the same inference time and model size. Two kinds of attentions have been considered to make the learned feature maps being aware of the person and related body parts respectively. Globally, a holistic attention branch (HAB) makes the feature maps obtained by backbone focus on persons so as to alleviate the influence of background. Locally, a partial attention branch (PAB) makes the extracted features be decoupled into several groups and be separately responsible for different body parts (i.e., keypoints), thus increasing the robustness to pose variation and partial occlusion. These two kinds of attentions are universal and can be incorporated into existing ReID networks. We have tested its performance on two typical networks (TriNet and Bag of Tricks) and observed significant performance improvement on five widely used datasets.
Person Re-identification (re-id) aims to match people across non-overlapping camera views in a public space. It is a challenging problem because many people captured in surveillance videos wear similar clothes. Consequently, the differences in their appearance are often subtle and only detectable at the right location and scales. Existing re-id models, particularly the recently proposed deep learning based ones match people at a single scale. In contrast, in this paper, a novel multi-scale deep learning model is proposed. Our model is able to learn deep discriminative feature representations at different scales and automatically determine the most suitable scales for matching. The importance of different spatial locations for extracting discriminative features is also learned explicitly. Experiments are carried out to demonstrate that the proposed model outperforms the state-of-the art on a number of benchmarks
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا