An Unsupervised Deep-Learning Method for Fingerprint Classification: the CCAE Network and the Hybrid Clustering Strategy


Abstract in English

The fingerprint classification is an important and effective method to quicken the process and improve the accuracy in the fingerprint matching process. Conventional supervised methods need a large amount of pre-labeled data and thus consume immense human resources. In this paper, we propose a new and efficient unsupervised deep learning method that can extract fingerprint features and classify fingerprint patterns automatically. In this approach, a new model named constraint convolutional auto-encoder (CCAE) is used to extract fingerprint features and a hybrid clustering strategy is applied to obtain the final clusters. A set of experiments in the NIST-DB4 dataset shows that the proposed unsupervised method exhibits the efficient performance on fingerprint classification. For example, the CCAE achieves an accuracy of 97.3% on only 1000 unlabeled fingerprints in the NIST-DB4.

Download