Do you want to publish a course? Click here

Knowledge Enhanced Fine-Tuning for Better Handling Unseen Entities in Dialogue Generation

91   0   0.0 ( 0 )
 Added by Leyang Cui
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Although pre-training models have achieved great success in dialogue generation, their performance drops dramatically when the input contains an entity that does not appear in pre-training and fine-tuning datasets (unseen entity). To address this issue, existing methods leverage an external knowledge base to generate appropriate responses. In real-world scenario, the entity may not be included by the knowledge base or suffer from the precision of knowledge retrieval. To deal with this problem, instead of introducing knowledge base as the input, we force the model to learn a better semantic representation by predicting the information in the knowledge base, only based on the input context. Specifically, with the help of a knowledge base, we introduce two auxiliary training objectives: 1) Interpret Masked Word, which conjectures the meaning of the masked entity given the context; 2) Hypernym Generation, which predicts the hypernym of the entity based on the context. Experiment results on two dialogue corpus verify the effectiveness of our methods under both knowledge available and unavailable settings.



rate research

Read More

In entity linking, mentions of named entities in raw text are disambiguated against a knowledge base (KB). This work focuses on linking to unseen KBs that do not have training data and whose schema is unknown during training. Our approach relies on methods to flexibly convert entities from arbitrary KBs with several attribute-value pairs into flat strings, which we use in conjunction with state-of-the-art models for zero-shot linking. To improve the generalization of our model, we use two regularization schemes based on shuffling of entity attributes and handling of unseen attributes. Experiments on English datasets where models are trained on the CoNLL dataset, and tested on the TAC-KBP 2010 dataset show that our models outperform baseline models by over 12 points of accuracy. Unlike prior work, our approach also allows for seamlessly combining multiple training datasets. We test this ability by adding both a completely different dataset (Wikia), as well as increasing amount of training data from the TAC-KBP 2010 training set. Our models perform favorably across the board.
We present our work on Track 4 in the Dialogue System Technology Challenges 8 (DSTC8). The DSTC8-Track 4 aims to perform dialogue state tracking (DST) under the zero-shot settings, in which the model needs to generalize on unseen service APIs given a schema definition of these target APIs. Serving as the core for many virtual assistants such as Siri, Alexa, and Google Assistant, the DST keeps track of the users goal and what happened in the dialogue history, mainly including intent prediction, slot filling, and user state tracking, which tests models ability of natural language understanding. Recently, the pretrained language models have achieved state-of-the-art results and shown impressive generalization ability on various NLP tasks, which provide a promising way to perform zero-shot learning for language understanding. Based on this, we propose a schema-guided paradigm for zero-shot dialogue state tracking (SGP-DST) by fine-tuning BERT, one of the most popular pretrained language models. The SGP-DST system contains four modules for intent prediction, slot prediction, slot transfer prediction, and user state summarizing respectively. According to the official evaluation results, our SGP-DST (team12) ranked 3rd on the joint goal accuracy (primary evaluation metric for ranking submissions) and 1st on the requsted slots F1 among 25 participant teams.
127 - Jian Wang , Junhao Liu , Wei Bi 2019
Neural network models usually suffer from the challenge of incorporating commonsense knowledge into the open-domain dialogue systems. In this paper, we propose a novel knowledge-aware dialogue generation model (called TransDG), which transfers question representation and knowledge matching abilities from knowledge base question answering (KBQA) task to facilitate the utterance understanding and factual knowledge selection for dialogue generation. In addition, we propose a response guiding attention and a multi-step decoding strategy to steer our model to focus on relevant features for response generation. Experiments on two benchmark datasets demonstrate that our model has robust superiority over compared methods in generating informative and fluent dialogues. Our code is available at https://github.com/siat-nlp/TransDG.
Dialogue generation has been successfully learned from scratch by neural networks, but tends to produce the same general response, e.g., what are you talking about?, in many conversations. To reduce this homogeneity, external knowledge such as the speakers profile and domain knowledge is applied as an additional condition to diversify a models output. The required knowledge to develop an effective conversation, however, is not always available, which is different from prior works assumption that a model always has acquired sufficient knowledge before chatting. This problem can be detrimental when applying a dialogue model like this chatting online with unconstrained people and topics, because the model does not have the needed knowledge. To address this problem, we propose InjK, which is a two-stage approach to inject knowledge into a dialogue generation model. First, we train a large-scale language model and query it as textual knowledge. Second, we frame a dialogue generation model to sequentially generate textual knowledge and a corresponding response. Empirically, when a dialogue generation model can only access limited knowledge, our method outperforms prior work by producing more coherent and informative responses.
Commonsense generation aims at generating plausible everyday scenario description based on a set of provided concepts. Digging the relationship of concepts from scratch is non-trivial, therefore, we retrieve prototypes from external knowledge to assist the understanding of the scenario for better description generation. We integrate two additional modules, namely position indicator and scaling module, into the pretrained encoder-decoder model for prototype modeling to enhance the knowledge injection procedure. We conduct experiment on CommonGen benchmark, and experimental results show that our method significantly improves the performance on all the metrics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا