No Arabic abstract
We study the Hilbert function of a general union $Xsubset mathbb{P}^3$ of $x$ double lines and $y$ lines. In many cases (e.g. always for $x=2$ and $yge 3$ or for $x=3$ and $yge 2$ or for $xge 4$ and $yge lceil(binom{3x+4}{3} -27x-12)/(3x+2)rceil +3-x$) we prove that $X$ has maximal rank. We give a few examples of $x$ and $y$ for which $X$ has not maximal rank.
For a toric pair $(X, D)$, where $X$ is a projective toric variety of dimension $d-1geq 1$ and $D$ is a very ample $T$-Cartier divisor, we show that the Hilbert-Kunz density function $HKd(X, D)(lambda)$ is the $d-1$ dimensional volume of ${overline {mathcal P}}_D cap {z= lambda}$, where ${overline {mathcal P}}_Dsubset {mathbb R}^d$ is a compact $d$-dimensional set (which is a finite union of convex polytopes). We also show that, for $kgeq 1$, the function $HKd(X, kD)$ can be replaced by another compactly supported continuous function $varphi_{kD}$ which is `linear in $k$. This gives the formula for the associated coordinate ring $(R, {bf m})$: $$lim_{kto infty}frac{e_{HK}(R, {bf m}^k) - e_0(R, {bf m}^k)/d!}{k^{d-1}} = frac{e_0(R, {bf m})}{(d-1)!}int_0^inftyvarphi_D(lambda)dlambda, $$ where $varphi_D$ (see Proposition~1.2) is solely determined by the shape of the polytope $P_D$, associated to the toric pair $(X, D)$. Moreover $varphi_D$ is a multiplicative function for Segre products. This yields explicit computation of $varphi_D$ (and hence the limit), for smooth Fano toric surfaces with respect to anticanonical divisor. In general, due to this formulation in terms of the polytope $P_D$, one can explicitly compute the limit for two dimensional toric pairs and their Segre products. We further show that (Theorem~6.3) the renormailzed limit takes the minimum value if and only if the polytope $P_D$ tiles the space $M_{mathbb R} = {mathbb R}^{d-1}$ (with the lattice $M = {mathbb Z}^{d-1}$). As a consequence, one gets an algebraic formulation of the tiling property of any rational convex polytope.
We enrich the classical count that there are two complex lines meeting four lines in space to an equality of isomorphism classes of bilinear forms. For any field $k$, this enrichment counts the number of lines meeting four lines defined over $k$ in $mathbb{P}^3_k$, with such lines weighted by their fields of definition together with information about the cross-ratio of the intersection points and spanning planes. We generalize this example to an infinite family of such enrichments, obtained using an Euler number in $mathbb{A}^1$-homotopy theory. The classical counts are recovered by taking the rank of the bilinear forms. In the appendix, the condition that the four lines each be defined over $k$ is relaxed to the condition that the set of four lines being defined over $k$.
Let $mathcal{M}(n,m;F bp^n)$ be the configuration space of $m$-tuples of pairwise distinct points in $F bp^n$, that is, the quotient of the set of $m$-tuples of pairwise distinct points in $F bp^n$ with respect to the diagonal action of ${rm PU}(1,n;F)$ equipped with the quotient topology. It is an important problem in hyperbolic geometry to parameterize $mathcal{M}(n,m;F bp^n)$ and study the geometric and topological structures on the associated parameter space. In this paper, by mainly using the rotation-normalized and block-normalized algorithms, we construct the parameter spaces of both $mathcal{M}(n,m; bhq)$ and $mathcal{M}(n,m;bp(V_+))$, respectively.
This is a survey on the Fano schemes of linear spaces, conics, rational curves, and curves of higher genera in smooth projective hypersurfaces, complete intersections, Fano threefolds, etc.
Computation of parallel lines (envelopes) to parabolas, ellipses, and hyperbolas is of importance in structure engineering and theory of mechanisms. Homogeneous polynomials that implicitly define parallel lines for the given offset to a conic are found by computing Groebner bases for an elimination ideal of a suitably defined affine variety. Singularity of the lines is discussed and their singular points are explicitly found as functions of the offset and the parameters of the conic. Critical values of the offset are linked to the maximum curvature of each conic. Application to a finite element analysis is shown. Keywords: Affine variety, elimination ideal, Groebner basis, homogeneous polynomial, singularity, family of curves, envelope, pitch curve, undercutting, cam surface