Do you want to publish a course? Click here

Medulloblastoma Tumor Classification using Deep Transfer Learning with Multi-Scale EfficientNets

88   0   0.0 ( 0 )
 Added by Marcel Bengs
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Medulloblastoma (MB) is the most common malignant brain tumor in childhood. The diagnosis is generally based on the microscopic evaluation of histopathological tissue slides. However, visual-only assessment of histopathological patterns is a tedious and time-consuming task and is also affected by observer variability. Hence, automated MB tumor classification could assist pathologists by promoting consistency and robust quantification. Recently, convolutional neural networks (CNNs) have been proposed for this task, while transfer learning has shown promising results. In this work, we propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions. We focus on differentiating between the histological subtypes classic and desmoplastic/nodular. For this purpose, we systematically evaluate recently proposed EfficientNets, which uniformly scale all dimensions of a CNN. Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements compared to commonly used pre-trained CNN architectures. Also, we highlight the importance of transfer learning, when using such large architectures. Overall, our best performing method achieves an F1-Score of 80.1%.



rate research

Read More

Medulloblastoma (MB) is a primary central nervous system tumor and the most common malignant brain cancer among children. Neuropathologists perform microscopic inspection of histopathological tissue slides under a microscope to assess the severity of the tumor. This is a time-consuming task and often infused with observer variability. Recently, pre-trained convolutional neural networks (CNN) have shown promising results for MB subtype classification. Typically, high-resolution images are divided into smaller tiles for classification, while the size of the tiles has not been systematically evaluated. We study the impact of tile size and input strategy and classify the two major histopathological subtypes-Classic and Demoplastic/Nodular. To this end, we use recently proposed EfficientNets and evaluate tiles with increasing size combined with various downsampling scales. Our results demonstrate using large input tiles pixels followed by intermediate downsampling and patch cropping significantly improves MB classification performance. Our top-performing method achieves the AUC-ROC value of 90.90% compared to 84.53% using the previous approach with smaller input tiles.
Brain tumor is one of the leading causes of cancer-related death globally among children and adults. Precise classification of brain tumor grade (low-grade and high-grade glioma) at early stage plays a key role in successful prognosis and treatment planning. With recent advances in deep learning, Artificial Intelligence-enabled brain tumor grading systems can assist radiologists in the interpretation of medical images within seconds. The performance of deep learning techniques is, however, highly depended on the size of the annotated dataset. It is extremely challenging to label a large quantity of medical images given the complexity and volume of medical data. In this work, we propose a novel transfer learning based active learning framework to reduce the annotation cost while maintaining stability and robustness of the model performance for brain tumor classification. We employed a 2D slice-based approach to train and finetune our model on the Magnetic Resonance Imaging (MRI) training dataset of 203 patients and a validation dataset of 66 patients which was used as the baseline. With our proposed method, the model achieved Area Under Receiver Operating Characteristic (ROC) Curve (AUC) of 82.89% on a separate test dataset of 66 patients, which was 2.92% higher than the baseline AUC while saving at least 40% of labeling cost. In order to further examine the robustness of our method, we created a balanced dataset, which underwent the same procedure. The model achieved AUC of 82% compared with AUC of 78.48% for the baseline, which reassures the robustness and stability of our proposed transfer learning augmented with active learning framework while significantly reducing the size of training data.
Ovarian cancer is the most lethal cancer of the female reproductive organs. There are $5$ major histological subtypes of epithelial ovarian cancer, each with distinct morphological, genetic, and clinical features. Currently, these histotypes are determined by a pathologists microscopic examination of tumor whole-slide images (WSI). This process has been hampered by poor inter-observer agreement (Cohens kappa $0.54$-$0.67$). We utilized a textit{two}-stage deep transfer learning algorithm based on convolutional neural networks (CNN) and progressive resizing for automatic classification of epithelial ovarian carcinoma WSIs. The proposed algorithm achieved a mean accuracy of $87.54%$ and Cohens kappa of $0.8106$ in the slide-level classification of $305$ WSIs; performing better than a standard CNN and pathologists without gynecology-specific training.
According to the World Health Organization, cancer is the second leading cause of death worldwide, responsible for over 9.5 million deaths in 2018 alone. Brain tumors count for one out of every four cancer deaths. Accurate and timely diagnosis of brain tumors will lead to more effective treatments. To date, several image classification approaches have been proposed to aid diagnosis and treatment. We propose an encoder layer that uses post-max-pooling features for residual learning. Our approach shows promising results by improving the tumor classification accuracy in MR images using a limited medical image dataset. Experimental evaluations of this model on a dataset consisting of 3064 MR images show 95-98% accuracy, which is better than previous studies on this database.
Microscopic examination of tissues or histopathology is one of the diagnostic procedures for detecting colorectal cancer. The pathologist involved in such an examination usually identifies tissue type based on texture analysis, especially focusing on tumour-stroma ratio. In this work, we automate the task of tissue classification within colorectal cancer histology samples using deep transfer learning. We use discriminative fine-tuning with one-cycle-policy and apply structure-preserving colour normalization to boost our results. We also provide visual explanations of the deep neural networks decision on texture classification. With achieving state-of-the-art test accuracy of 96.2% we also embark on using deployment friendly architecture called SqueezeNet for memory-limited hardware.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا