No Arabic abstract
Temperature in thermodynamics is synonymous with disorder, and responsible for ultimately destroying ordered phases. Here, we show an unusual magnetic transition where, with increasing the temperature of elemental neodymium, long-range multi-Q magnetic order emerges from a self-induced spin glass. Using temperature-dependent spin-polarized scanning tunneling microscopy, we characterize the local Q order in the spin-Q glass phase and quantify the emergence of long-range multi-Q order with increasing temperature. We develop two distinct analysis tools, which enable the quantification of the glass transition temperature, based on measured spatially-dependent magnetization. We compare these observations with atomic spin dynamics simulations, which reproduce the qualitative observation of a phase transition from a low-temperature spin glass phase to an intermediate ordered multi-Q phase. These simulations trace the origin of the unexpected high temperature order in weakened frustration driven by temperature-dependent sublattice correlations. These findings constitute an example of order from disorder and provide a rich platform to study magnetization dynamics in a self-induced spin glass.
Spin glasses are a highly complex magnetic state of matter, intricately linked to spin frustration and structural disorder. They exhibit no long-range order and exude aging phenomena, distinguishing them from quantum spin liquids. We report a new type of spin glass state, the spin-Q glass, observable in bulk-like crystalline metallic neodymium thick films. Using spin-polarized scanning tunneling microscopy combined with ab initio calculations and atomistic spin-dynamics simulations, we visualize the variations in atomic-scale non-collinear order and its response to magnetic field and temperature. We quantify the aging phenomena relating the glassiness to crystalline symmetry and the energy landscape. This result not only resolves the long-standing debate of the magnetism of neodymium, but also suggests that glassiness may arise in other magnetic solids lacking extrinsic disorder.
The classical spin-flop is the field-driven first-order reorientation transition in easy-axis antiferromagnets. A comprehensive phenomenological theory of easy-axis antiferromagnets displaying spin-flops is developed. It is shown how the hierarchy of magnetic coupling strengths in these antiferromagnets causes a strongly pronounced two-scale character in their magnetic phase structure. In contrast to the major part of the magnetic phase diagram, these antiferromagnets near the spin-flop region are described by an effective model akin to uniaxial ferromagnets. For a consistent theoretical description both higher-order anisotropy contributions and dipolar stray-fields have to be taken into account near the spin-flop. In particular, thermodynamically stable multidomain states exist in the spin-flop region, owing to the phase coexistence at this first-order transition. For this region, equilibrium spin-configurations and parameters of the multidomain states are derived as functions of the external magnetic field. The components of the magnetic susceptibility tensor are calculated for homogeneous and multidomain states in the vicinity of the spin-flop. The remarkable anomalies in these measurable quantities provide an efficient method to investigate magnetic states and to determine materials parameters in bulk and confined antiferromagnets, as well as in nanoscale synthetic antiferromagnets. The method is demonstrated for experimental data on the magnetic properties near the spin-flop region in the orthorhombic layered antiferromagnet (C_2H_5NH_3)_2CuCl_4.
In the paper we predict a distinctive change of magnetic properties and considerable increase of the Curie temperature caused by the strain fields of grain boundaries in ferromagnetic films. It is shown that a sheet of spontaneous magnetization may arise along a grain boundary at temperatures greater than the bulk Curie temperature. The temperature dependence and space distribution of magnetization in a ferromagnetic film with grain boundaries are calculated. We found that $45^circ$ grain boundaries can produce long-range strain fields that results in the width of the magnetic sheet along the boundary of the order of $ 0.5 div 1 mu m$ at temperatures grater than the bulk Curie temperature by about $10^2$ K.
We study the glass formation in two- and three-dimensional Ising and Heisenberg spin systems subject to competing interactions and uniaxial anisotropy with a mean-field approach. In three dimensions, for sufficiently strong anisotropy the systems always modulates in a striped phase. Below a critical strength of the anisotropy, a glassy phase exists in a finite range of temperature, and it becomes more stable as the system becomes more isotropic. In two dimension the criticality is always avoided and the glassy phase always exists.
Synthetic ferrimagnets are composite magnetic structures formed from two or more anti- ferromagnetically coupled magnetic sublattices with different magnetic moments. Here we report on atomistic spin simulations of the laser-induced magnetization dynamics on such synthetic ferrimag- nets, and demonstrate that the application of ultrashort laser pulses leads to sub-picoscond magnetization dynamics and all-optical switching in a similar manner as in ferrimagnetic alloys. Moreover, we present the essential material properties for successful laser-induced switching, demonstrating the feasibility of using a synthetic ferrimagnet as a high density magnetic storage element without the need of a write field.