No Arabic abstract
In cellular reprogramming, almost all epigenetic memories of differentiated cells are erased by the overexpression of few genes, regaining pluripotency, potentiality for differentiation. Considering the interplay between oscillatory gene expression and slower epigenetic modifications, such reprogramming is perceived as an unintuitive, global attraction to the unstable manifold of a saddle, which represents pluripotency. The universality of this scheme is confirmed by the repressilator model, and by gene regulatory networks randomly generated and those extracted from embryonic stem cells.
We develop a general theory for active viscoelastic materials made of polar filaments. This theory is motivated by the dynamics of the cytoskeleton. The continuous consumption of a fuel generates a non equilibrium state characterized by the generation of flows and stresses. Our theory can be applied to experiments in which cytoskeletal patterns are set in motion by active processes such as those which are at work in cells.
One popular assumption regarding biological systems is that traits have evolved to be optimized with respect to function. This is a standard goal in evolutionary computation, and while not always embraced in the biological sciences, is an underlying assumption of what happens when fitness is maximized. The implication of this is that a signaling pathway or phylogeny should show evidence of minimizing the number of steps required to produce a biochemical product or phenotypic adaptation. In this paper, it will be shown that a principle of maximum intermediate steps may also characterize complex biological systems, especially those in which extreme historical contingency or a combination of mutation and recombination are key features. The contribution to existing literature is two-fold: demonstrating both the potential for non-optimality in engineered systems with lifelike attributes, and the underpinnings of non-optimality in naturalistic contexts. This will be demonstrated by using the Rube Goldberg Machine (RGM) analogy. Mechanical RGMs will be introduced, and their relationship to conceptual biological RGMs. Exemplars of these biological RGMs and their evolution (e.g. introduction of mutations and recombination-like
Understanding the mechanisms of complex systems is very important. Networked dynamical system, that understanding a system as a group of nodes interacting on a given network according to certain dynamic rules, is a powerful tool for modelling complex systems. However, finding such models according to the time series of behaviors is hard. Conventional methods can work well only on small networks and some types of dynamics. Based on a Bernoulli network generator and a Markov dynamics learner, this paper proposes a unified framework for Automated Interaction network and Dynamics Discovery (AIDD) on various network structures and different types of dynamics. The experiments show that AIDD can be applied on large systems with thousands of nodes. AIDD can not only infer the unknown network structure and states for hidden nodes but also can reconstruct the real gene regulatory network based on the noisy, incomplete, and being disturbed data which is closed to real situations. We further propose a new method to test data-driven models by experiments of control. We optimize a controller on the learned model, and then apply it on both the learned and the ground truth models. The results show that both of them behave similarly under the same control law, which means AIDD models have learned the real network dynamics correctly.
We propose a new framework for the study of continuous time dynamical systems on networks. We view such dynamical systems as collections of interacting control systems. We show that a class of maps between graphs called graph fibrations give rise to maps between dynamical systems on networks. This allows us to produce conjugacy between dynamical systems out of combinatorial data. In particular we show that surjective graph fibrations lead to synchrony subspaces in networks. The injective graph fibrations, on the other hand, give rise to surjective maps from large dynamical systems to smaller ones. One can view these surjections as a kind of fast/slow variable decompositions or as abstractions in the computer science sense of the word.
In this thesis we study the strongly-correlated-electron physics of the longstanding H-Tc-superconductivity problem using a non-perturbative method, the Dynamical Mean Field Theory (DMFT), capable to go beyond standard perturbation-theory techniques. DMFT is by construction a local theory which neglects spatial correlation. Experiments have however shown that the latter is a fundamental property of cuprate materials. In a first step, we approach the problem of spatial correlation in the normal state of cuprate materials using a phenomenological Fermi-Liquid-Boltzmann model. We then introduce and develop in detail an extension to DMFT, the Cellular Dynamical Mean Field Theory (CDMFT), capable of considering short-ranged spatial correlation in a system, and we implement it using the exact diagonalization algorithm . After benchmarking CDMFT with the exact one-dimensional solution of the Hubbard Model, we employ it to study the density-driven Mott metal-insulator transition in the two-dimensional Hubbard Model, focusing in particular on the anomalous properties of the doped normal state close to the Mott insulator. We finally study the superconducting state. We show that within CDMFT the one-band Hubbard Model supports a d-wave superconductive state, which strongly departs from the standard BCS theory. We conjecture a link between the instabilities found in the normal state and the onset of superconductivity.