No Arabic abstract
Recently, several studies have explored the use of neural network to solve different routing problems, which is an auspicious direction. These studies usually design an encoder-decoder based framework that uses encoder embeddings of nodes and the problem-specific context to produce node sequence(path), and further optimize the produced result on top by beam search. However, existing models can only support node coordinates as input, ignore the self-referential property of the studied routing problems, and lack the consideration about the low reliability in the initial stage of node selection, thus are hard to be applied in real-world. In this paper, we take the orienteering problem as an example to tackle these limitations. We propose a novel combination of a variant beam search algorithm and a learned heuristic for solving the general orienteering problem. We acquire the heuristic with an attention network that takes the distances among nodes as input, and learn it via a reinforcement learning framework. The empirical studies show that our method can surpass a wide range of baselines and achieve results close to the optimal or highly specialized approach. Also, our proposed framework can be easily applied to other routing problems. Our code is publicly available.
We propose a novel non-randomized anytime orienteering algorithm for finding k-optimal goals that maximize reward on a specialized graph with budget constraints. This specialized graph represents a real-world scenario which is analogous to an orienteering problem of finding k-most optimal goal states.
Knowledge graph completion (KGC) has become a focus of attention across deep learning community owing to its excellent contribution to numerous downstream tasks. Although recently have witnessed a surge of work on KGC, they are still insufficient to accurately capture complex relations, since they adopt the single and static representations. In this work, we propose a novel Disentangled Knowledge Graph Attention Network (DisenKGAT) for KGC, which leverages both micro-disentanglement and macro-disentanglement to exploit representations behind Knowledge graphs (KGs). To achieve micro-disentanglement, we put forward a novel relation-aware aggregation to learn diverse component representation. For macro-disentanglement, we leverage mutual information as a regularization to enhance independence. With the assistance of disentanglement, our model is able to generate adaptive representations in terms of the given scenario. Besides, our work has strong robustness and flexibility to adapt to various score functions. Extensive experiments on public benchmark datasets have been conducted to validate the superiority of DisenKGAT over existing methods in terms of both accuracy and explainability.
The workflow satisfiability problem (WSP) is a well-studied problem in access control seeking allocation of authorised users to every step of the workflow, subject to workflow specification constraints. It was noticed that the number $k$ of steps is typically small compared to the number of users in the real-world instances of WSP; therefore $k$ is considered as the parameter in WSP parametrised complexity research. While WSP in general was shown to be W[1]-hard, WSP restricted to a special case of user-independent (UI) constraints is fixed-parameter tractable (FPT). However, restriction to the UI constraints might be impractical. To efficiently handle non-UI constraints, we introduce the notion of branching factor of a constraint. As long as the branching factors of the constraints are relatively small and the number of non-UI constraints is reasonable, WSP can be solved in FPT time. Extending the results from Karapetyan et al. (2019), we demonstrate that general-purpose solvers are capable of achieving FPT-like performance on WSP with arbitrary constraints when used with appropriate formulations. This enables one to tackle most of practical WSP instances. While important on its own, we hope that this result will also motivate researchers to look for FPT-aware formulations of other FPT problems.
With the recent advancements in deep learning, neural solvers have gained promising results in solving math word problems. However, these SOTA solvers only generate binary expression trees that contain basic arithmetic operators and do not explicitly use the math formulas. As a result, the expression trees they produce are lengthy and uninterpretable because they need to use multiple operators and constants to represent one single formula. In this paper, we propose sequence-to-general tree (S2G) that learns to generate interpretable and executable operation trees where the nodes can be formulas with an arbitrary number of arguments. With nodes now allowed to be formulas, S2G can learn to incorporate mathematical domain knowledge into problem-solving, making the results more interpretable. Experiments show that S2G can achieve a better performance against strong baselines on problems that require domain knowledge.
Seeking the equivalent entities among multi-source Knowledge Graphs (KGs) is the pivotal step to KGs integration, also known as emph{entity alignment} (EA). However, most existing EA methods are inefficient and poor in scalability. A recent summary points out that some of them even require several days to deal with a dataset containing 200,000 nodes (DWY100K). We believe over-complex graph encoder and inefficient negative sampling strategy are the two main reasons. In this paper, we propose a novel KG encoder -- Dual Attention Matching Network (Dual-AMN), which not only models both intra-graph and cross-graph information smartly, but also greatly reduces computational complexity. Furthermore, we propose the Normalized Hard Sample Mining Loss to smoothly select hard negative samples with reduced loss shift. The experimental results on widely used public datasets indicate that our method achieves both high accuracy and high efficiency. On DWY100K, the whole running process of our method could be finished in 1,100 seconds, at least 10* faster than previous work. The performances of our method also outperform previous works across all datasets, where Hits@1 and MRR have been improved from 6% to 13%.