Do you want to publish a course? Click here

The Picard group of the category of $C_n$-equivariant stable homotopy theory

73   0   0.0 ( 0 )
 Added by Vigleik Angeltveit
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

For a finite group $G$, there is a map $RO(G) to {rm Pic}(Sp^G)$ from the real representation ring of $G$ to the Picard group of $G$-spectra. This map is not known to be surjective in general, but we prove that when $G$ is cyclic this map is indeed surjective and in that case we describe ${rm Pic}(Sp^G)$ explicitly. We also show that for an arbitrary finite group $G$ homology and cohomology with coefficients in a cohomological Mackey functor do not see the part of ${rm Pic}(Sp^G)$ coming from the Picard group of the Burnside ring. Hence these homology and cohomology calculations can be graded on a smaller group.



rate research

Read More

79 - Po Hu , Igor Kriz , Petr Somberg 2018
We investigate certain adjunctions in derived categories of equivariant spectra, including a right adjoint to fixed points, a right adjoint to pullback by an isometry of universes, and a chain of two right adjoints to geometric fixed points. This leads to a variety of interesting other adjunctions, including a chain of 6 (sometimes 7) adjoints involving the restriction functor to a subgroup of a finite group on equivariant spectra indexed over the trivial universe.
Let $G$ be a discrete group. We prove that the category of $G$-posets admits a model structure that is Quillen equivalent to the standard model structure on $G$-spaces. As is already true nonequivariantly, the three classes of maps defining the model structure are not well understood calculationally. To illustrate, we exhibit some examples of cofibrant and fibrant posets and an example of a non-cofibrant finite poset.
195 - Mark Behrens , Jay Shah 2019
We give a method for computing the C_2-equivariant homotopy groups of the Betti realization of a p-complete cellular motivic spectrum over R in terms of its motivic homotopy groups. More generally, we show that Betti realization presents the C_2-equivariant p-complete stable homotopy category as a localization of the p-complete cellular real motivic stable homotopy category.
130 - Michael A. Hill 2019
We introduce a notion of freeness for $RO$-graded equivariant generalized homology theories, considering spaces or spectra $E$ such that the $R$-homology of $E$ splits as a wedge of the $R$-homology of induced virtual representation spheres. The full subcategory of these spectra is closed under all of the basic equivariant operations, and this greatly simplifies computation. Many examples of spectra and homology theories are included along the way. We refine this to a collection of spectra analogous to the pure and isotropic spectra considered by Hill--Hopkins--Ravenel. For these spectra, the $RO$-graded Bredon homology is extremely easy to compute, and if these spaces have additional structure, then this can also be easily determined. In particular, the homology of a space with this property naturally has the structure of a co-Tambara functor (and compatibly with any additional product structure). We work this out in the example of $BU_{mathbb R}$ and coinduce
131 - Drew Heard 2021
Following a suggestion of Hovey and Strickland, we study the category of $K(k) vee K(k+1) vee cdots vee K(n)$-local spectra. When $k = 0$, this is equivalent to the category of $E(n)$-local spectra, while for $k = n$, this is the category of $K(n)$-local spectra, both of which have been studied in detail by Hovey and Strickland. Based on their ideas, we classify the localizing and colocalizing subcategories, and give characterizations of compact and dualizable objects. We construct an Adams type spectral sequence and show that when $p gg n$ it collapses with a horizontal vanishing line above filtration degree $n^2+n-k$ at the $E_2$-page for the sphere spectrum. We then study the Picard group of $K(k) vee K(k+1) vee cdots vee K(n)$-local spectra, showing that this group is algebraic, in a suitable sense, when $p gg n$. We also consider a version of Gross--Hopkins duality in this category. A key concept throughout is the use of descent.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا