We explicitly compute the limiting slope gap distribution for saddle connections on any 2n-gon. Our calculations show that the slope gap distribution for a translation surface is not always unimodal, answering a question of Athreya. We also give linear lower and upper bounds for number of non-differentiability points as n grows. The latter result exhibits the first example of a non-trivial bound on an infinite family of translation surfaces and answers a question by Kumanduri-Wang.