Do you want to publish a course? Click here

Algorithms and Certificates for Boolean CSP Refutation: Smoothed is no harder than Random

451   0   0.0 ( 0 )
 Added by Peter Manohar
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present an algorithm for strongly refuting smoothed instances of all Boolean CSPs. The smoothed model is a hybrid between worst and average-case input models, where the input is an arbitrary instance of the CSP with only the negation patterns of the literals re-randomized with some small probability. For an $n$-variable smoothed instance of a $k$-arity CSP, our algorithm runs in $n^{O(ell)}$ time, and succeeds with high probability in bounding the optimum fraction of satisfiable constraints away from $1$, provided that the number of constraints is at least $tilde{O}(n) (frac{n}{ell})^{frac{k}{2} - 1}$. This matches, up to polylogarithmic factors in $n$, the trade-off between running time and the number of constraints of the state-of-the-art algorithms for refuting fully random instances of CSPs [RRS17]. We also make a surprising new connection between our algorithm and even covers in hypergraphs, which we use to positively resolve Feiges 2008 conjecture, an extremal combinatorics conjecture on the existence of even covers in sufficiently dense hypergraphs that generalizes the well-known Moore bound for the girth of graphs. As a corollary, we show that polynomial-size refutation witnesses exist for arbitrary smoothed CSP instances with number of constraints a polynomial factor below the spectral threshold of $n^{k/2}$, extending the celebrated result for random 3-SAT of Feige, Kim and Ofek [FKO06].



rate research

Read More

We give an efficient algorithm to strongly refute emph{semi-random} instances of all Boolean constraint satisfaction problems. The number of constraints required by our algorithm matches (up to polylogarithmic factors) the best-known bounds for efficient refutation of fully random instances. Our main technical contribution is an algorithm to strongly refute semi-random instances of the Boolean $k$-XOR problem on $n$ variables that have $widetilde{O}(n^{k/2})$ constraints. (In a semi-random $k$-XOR instance, the equations can be arbitrary and only the right-hand sides are random.) One of our key insights is to identify a simple combinatorial property of random XOR instances that makes spectral refutation work. Our approach involves taking an instance that does not satisfy this property (i.e., is emph{not} pseudorandom) and reducing it to a partitioned collection of $2$-XOR instances. We analyze these subinstances using a carefully chosen quadratic form as a proxy, which in turn is bounded via a combination of spectral methods and semidefinite programming. The analysis of our spectral bounds relies only on an off-the-shelf matrix Bernstein inequality. Even for the purely random case, this leads to a shorter proof compared to the ones in the literature that rely on problem-specific trace-moment computations.
We study efficient algorithms for Sparse PCA in standard statistical models (spiked covariance in its Wishart form). Our goal is to achieve optimal recovery guarantees while being resilient to small perturbations. Despite a long history of prior works, including explicit studies of perturbation resilience, the best known algorithmic guarantees for Sparse PCA are fragile and break down under small adversarial perturbations. We observe a basic connection between perturbation resilience and emph{certifying algorithms} that are based on certificates of upper bounds on sparse eigenvalues of random matrices. In contrast to other techniques, such certifying algorithms, including the brute-force maximum likelihood estimator, are automatically robust against small adversarial perturbation. We use this connection to obtain the first polynomial-time algorithms for this problem that are resilient against additive adversarial perturbations by obtaining new efficient certificates for upper bounds on sparse eigenvalues of random matrices. Our algorithms are based either on basic semidefinite programming or on its low-degree sum-of-squares strengthening depending on the parameter regimes. Their guarantees either match or approach the best known guarantees of emph{fragile} algorithms in terms of sparsity of the unknown vector, number of samples and the ambient dimension. To complement our algorithmic results, we prove rigorous lower bounds matching the gap between fragile and robust polynomial-time algorithms in a natural computational model based on low-degree polynomials (closely related to the pseudo-calibration technique for sum-of-squares lower bounds) that is known to capture the best known guarantees for related statistical estimation problems. The combination of these results provides formal evidence of an inherent price to pay to achieve robustness.
In this paper we provide an extended formulation for the class of constraint satisfaction problems and prove that its size is polynomial for instances whose constraint graph has bounded treewidth. This implies new upper bounds on extension complexity of several important NP-hard problems on graphs of bounded treewidth.
For Boolean satisfiability problems, the structure of the solution space is characterized by the solution graph, where the vertices are the solutions, and two solutions are connected iff they differ in exactly one variable. Motivated by research on heuristics and the satisfiability threshold, Gopalan et al. in 2006 studied connectivity properties of the solution graph and related complexity issues for constraint satisfaction problems in Schaefers framework. They found dichotomies for the diameter of connected components and for the complexity of the st-connectivity question, and conjectured a trichotomy for the connectivity question that we recently were able to prove. While Gopalan et al. considered CNF(S)-formulas with constants, we here look at two important variants: CNF(S)-formulas without constants, and partially quantified formulas. For the diameter and the st-connectivity question, we prove dichotomies analogous to those of Gopalan et al. in these settings. While we cannot give a complete classification for the connectivity problem yet, we identify fragments where it is in P, where it is coNP-complete, and where it is PSPACE-complete, in analogy to Gopalan et al.s trichotomy.
It has been proved that almost all $n$-bit Boolean functions have exact classical query complexity $n$. However, the situation seemed to be very different when we deal with exact quantum query complexity. In this paper, we prove that almost all $n$-bit Boolean functions can be computed by an exact quantum algorithm with less than $n$ queries. More exactly, we prove that ${AND}_n$ is the only $n$-bit Boolean function, up to isomorphism, that requires $n$ queries.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا