No Arabic abstract
The effectiveness of multiple electron cyclotron resonance (ECR) harmonics has been thoroughly investigated in context of high current drive efficiency, generally observed in fully non-inductive operation of the low aspect ratio EXL-50 spherical tokamak (ST) powered by electron cyclotron (EC) waves. The Fokker-Plank equation is numerically solved to obtain electron distribution function, under steady state of the relativistic nonlinear Coulomb collision and quasi-linear diffusion operators, for calculating plasma current driven by the injected EC wave. For the extra-ordinary EC wave, simulation results unfold a mechanism by which electrons moving around the cold second harmonic ECR layer strongly resonate with higher harmonics via the relativistic Doppler shifted resonance condition. This feature is in fact evident above a certain value of input EC wave power in simulation, indicating it to be a non-linear phenomenon. Similar to the experimental observation, high efficiency in current drive (over 1 A/W) has indeed been found in simulation for a typical low density ($sim 1times10^{18}~m^{-3}$), low temperature ($lesssim 100$ eV) plasma of EXL-50 by taking into account multi-pass absorptions in our simulation model. However, such characteristic is not found in the ordinary EC-wave study for both single-pass and multi-pass simulations, suggesting it as inefficient in driving current on our ST device.
The start-up and sustainment of a stochastic wave non-inductive current on a spherical torus was experimentally demonstrated for the first time using only electron cyclotron waves. The plasma current is insensitive to the injection angle of ECWs and approximately linearly correlated with the slope of the X-ray spectrum. Its direction is determined by the vertical magnetic field (BV). The temporal development in the number of X-ray bremsstrahlung photons with a specified energy is consistent with the stochastic heating model. Moreover, the ratio of Amps to Watts of the ECW is generally >1 kA/kW under normal conditions (maximum plasma current: 150 kA, ECW: 140 kW). The experimental results are explained using the stochastic heating model of the asymmetric electron velocity distribution in stochastic electromagnetic waves.
As a new spherical tokamak (ST) designed to simplify engineering requirements of a possible future fusion power source, the EXL-50 experiment features a low aspect ratio (A) vacuum vessel (VV), encircling a central post assembly containing the toroidal field coil conductors. Multiple electron cyclotron resonance heating (ECRH) resonances are located within the VV to possibly improve current drive effectiveness. The energetic electrons are observed via hard X-ray detectors, carry the bulk of the plasma current ranging from 50kA to 150kA, which is maintained for more than 1s duration. It is observed that over one Ampere current can be maintained per Watt of ECRH power issued from the 28-GHz gyrotrons. The plasma current with high line-density (approaching 1019m-2) has been achieved for plasma currents as high as 76kA. An analysis was carried out combining reconstructed multi-fluid equilibrium, guiding-center orbits, and resonant heating mechanisms. It is verified that in EXL-50 a broadly distributed current of energetic electrons creates smaller closed magnetic-flux surfaces of low aspect ratio that in turn confine the thermal plasma electrons and ions and participate in maintaining the equilibrium force-balance.
A new synergy mechanism between Ohkawa current drive (OKCD) of electron cyclotron (EC) waves and lower hybrid current drive (LHCD) is discovered and discussed. And the methodology to achieve this synergy effect is also introduced. Improvement of OKCD efficiency can be achieved up to a factor of ~ 2.5 in far off-axis radial region (r{ho} > 0.6) of tokamak plasmas. Making EC wave heating the electrons of co-Ip direction and LH wave heating the electrons of counter-Ip direction, the mechanism of this new synergy effect comes from the results of electron trapping and detrapping processes. The OKCD makes the low speed barely passing electrons to be trapped (trapping process), the LHCD pulls some of the high speed barely trapped electrons out of the trapped region in velocity space (detrapping process) and accelerates the detrapped electrons to a higher speed.
13MW of electron cyclotron current drive (ECCD) power deposited inside the q = 1 surface is likely to reduce the sawtooth period in ITER baseline scenario below the level empirically predicted to trigger neo-classical tearing modes (NTMs). However, since the ECCD control scheme is solely predicated upon changing the local magnetic shear, it is prudent to plan to use a complementary scheme which directly decreases the potential energy of the kink mode in order to reduce the sawtooth period. In the event that the natural sawtooth period is longer than expected, due to enhanced alpha particle stabilisation for instance, this ancillary sawtooth control can be provided from > 10MW of ion cyclotron resonance heating (ICRH) power with a resonance just inside the q = 1 surface. Both ECCD and ICRH control schemes would benefit greatly from active feedback of the deposition with respect to the rational surface. If the q = 1 surface can be maintained closer to the magnetic axis, the efficacy of ECCD and ICRH schemes significantly increases, the negative effect on the fusion gain is reduced, and off-axis negative-ion neutral beam injection (NNBI) can also be considered for sawtooth control. Consequently, schemes to reduce the q = 1 radius are highly desirable, such as early heating to delay the current penetration and, of course, active sawtooth destabilisation to mediate small frequent sawteeth and retain a small q = 1 radius.
Sawtooth control using steerable electron cyclotron current drive (ECCD) has been demonstrated in ASDEX Upgrade plasmas with a significant population of energetic ions in the plasma core and long uncontrolled sawtooth periods. The sawtooth period is found to be minimised when the ECCD resonance is swept to just inside the q = 1 surface. By utilising ECCD inside q = 1 for sawtooth control, it is possible to avoid the triggering of neoclassical tearing modes, even at significnatly higher pressure than anticipated in the ITER baseline scenario. Operation at 25% higher normalised pressure has been achieved when only modest ECCD power is used for sawtooth control compared to identical discharges without sawtooth control when neo-classical tearing modes are triggered by the sawteeth. Modelling suggests that the destabilisation arising from the change in the local magnetic shear caused by the ECCD is able to compete with the stabilising influence of the energetic particles inside the q = 1 surface.