Do you want to publish a course? Click here

Any Regular Polyhedron Can Transform to Another by O(1) Refoldings

466   0   0.0 ( 0 )
 Added by Ryuhei Uehara
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We show that several classes of polyhedra are joined by a sequence of O(1) refolding steps, where each refolding step unfolds the current polyhedron (allowing cuts anywhere on the surface and allowing overlap) and folds that unfolding into exactly the next polyhedron; in other words, a polyhedron is refoldable into another polyhedron if they share a common unfolding. Specifically, assuming equal surface area, we prove that (1) any two tetramonohedra are refoldable to each other, (2) any doubly covered triangle is refoldable to a tetramonohedron, (3) any (augmented) regular prismatoid and doubly covered regular polygon is refoldable to a tetramonohedron, (4) any tetrahedron has a 3-step refolding sequence to a tetramonohedron, and (5) the regular dodecahedron has a 4-step refolding sequence to a tetramonohedron. In particular, we obtain at most 6-step refolding sequence between any pair of Platonic solids, applying (5) for the dodecahedron and (1) and/or (2) for all other Platonic solids. As far as the authors know, this is the first result about common unfolding involving the regular dodecahedron.



rate research

Read More

Given a convex polyhedron $P$ of $n$ vertices inside a sphere $Q$, we give an $O(n^3)$-time algorithm that cuts $P$ out of $Q$ by using guillotine cuts and has cutting cost $O((log n)^2)$ times the optimal.
Let $mathcal{P}$ be an $mathcal{H}$-polytope in $mathbb{R}^d$ with vertex set $V$. The vertex centroid is defined as the average of the vertices in $V$. We prove that computing the vertex centroid of an $mathcal{H}$-polytope is #P-hard. Moreover, we show that even just checking whether the vertex centroid lies in a given halfspace is already #P-hard for $mathcal{H}$-polytopes. We also consider the problem of approximating the vertex centroid by finding a point within an $epsilon$ distance from it and prove this problem to be #P-easy by showing that given an oracle for counting the number of vertices of an $mathcal{H}$-polytope, one can approximate the vertex centroid in polynomial time. We also show that any algorithm approximating the vertex centroid to emph{any} ``sufficiently non-trivial (for example constant) distance, can be used to construct a fully polynomial approximation scheme for approximating the centroid and also an output-sensitive polynomial algorithm for the Vertex Enumeration problem. Finally, we show that for unbounded polyhedra the vertex centroid can not be approximated to a distance of $d^{{1/2}-delta}$ for any fixed constant $delta>0$.
We present the first universal reconfiguration algorithm for transforming a modular robot between any two facet-connected square-grid configurations using pivot moves. More precisely, we show that five extra helper modules (musketeers) suffice to reconfigure the remaining $n$ modules between any two given configurations. Our algorithm uses $O(n^2)$ pivot moves, which is worst-case optimal. Previous reconfiguration algorithms either require less restrictive sliding moves, do not preserve facet-connectivity, or for the setting we consider, could only handle a small subset of configurations defined by a local forbidden pattern. Configurations with the forbidden pattern do have disconnected reconfiguration graphs (discrete configuration spaces), and indeed we show that they can have an exponential number of connected components. But forbidding the local pattern throughout the configuration is far from necessary, as we show that just a constant number of added modules (placed to be freely reconfigurable) suffice for universal reconfigurability. We also classify three different models of natural pivot moves that preserve facet-connectivity, and show separations between these models.
116 - Alexey S Tarasov 2008
There exists a surface of a convex polyhedron P and a partition L of P into geodesic convex polygons such that there are no connected edge unfoldings of P without self-intersections (whose spanning tree is a subset of the edge skeleton of L).
120 - Lov K. Grover 1997
A quantum computer has a clear advantage over a classical computer for exhaustive search. The quantum mechanical algorithm for exhaustive search was originally derived by using subtle properties of a particular quantum mechanical operation called the Walsh-Hadamard (W-H) transform. This paper shows that this algorithm can be implemented by replacing the W-H transform by almost any quantum mechanical operation. This leads to several new applications where it improves the number of steps by a square-root. It also broadens the scope for implementation since it demonstrates quantum mechanical algorithms that can readily adapt to available technology.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا