A Dual-Channel Framework for Sarcasm Recognition by Detecting Sentiment Conflict


Abstract in English

Sarcasm employs ambivalence, where one says something positive but actually means negative, and vice versa. Due to the sophisticated and obscure sentiment, sarcasm brings in great challenges to sentiment analysis. In this paper, we show up the essence of sarcastic text is that the literal sentiment (expressed by the surface form of the text) is opposite to the deep sentiment (expressed by the actual meaning of the text). To this end, we propose a Dual-Channel Framework by modeling both literal and deep sentiments to recognize the sentiment conflict. Specifically, the proposed framework is capable of detecting the sentiment conflict between the literal and deep meanings of the input text. Experiments on the political debates and the Twitter datasets show that our framework achieves the best performance on sarcasm recognition.

Download