Do you want to publish a course? Click here

Bounds on fluctuations for ensembles of quantum thermal machines

129   0   0.0 ( 0 )
 Added by Dvira Segal
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study universal aspects of fluctuations in an ensemble of noninteracting continuous quantum thermal machines in the steady state limit. Considering an individual machine, such as a refrigerator, in which relative fluctuations (and high order cumulants) of the cooling heat current to the absorbed heat current, $eta^{(n)}$, are upper-bounded, $eta^{(n)}leq eta_C^n$ with $ngeq 2$ and $eta_C$ the Carnot efficiency, we prove that an {it ensemble} of $N$ distinct machines similarly satisfies this upper bound on the relative fluctuations of the ensemble, $eta_N^{(n)}leq eta_C^n$. For an ensemble of distinct quantum {it refrigerators} with components operating in the tight coupling limit we further prove the existence of a {it lower bound} on $eta_N^{(n)}$ in specific cases, exemplified on three-level quantum absorption refrigerators and resonant-energy thermoelectric junctions. Beyond special cases, the existence of a lower bound on $eta_N^{(2)}$ for an ensemble of quantum refrigerators is demonstrated by numerical simulations.



rate research

Read More

We study bounds on ratios of fluctuations in steady-state time-reversal heat engines controlled by multi affinities. In the linear response regime, we prove that the relative fluctuations (precision) of the output current (power) is always lower-bounded by the relative fluctuations of the input current (heat current absorbed from the hot bath). As a consequence, the ratio between the fluctuations of the output and input currents are bounded both from above and below, where the lower (upper) bound is determined by the square of the averaged efficiency (square of the Carnot efficiency) of the engine. The saturation of the lower bound is achieved in the tight-coupling limit when the determinant of the Onsager response matrix vanishes. Our analysis can be applied to different operational regimes, including engines, refrigerators, and heat pumps. We illustrate our findings in two types of continuous engines: two-terminal coherent thermoelectric junctions and three-terminal quantum absorption refrigerators. Numerical simulations in the far-from-equilibrium regime suggest that these bounds apply more broadly, beyond linear response.
When engineering microscopic machines, increasing efficiency can often come at a price of reduced reliability due to the impact of stochastic fluctuations. Here we develop a general method for performing multi-objective optimisation of efficiency and work fluctuations in thermal machines operating close to equilibrium in either the classical or quantum regime. Our method utilises techniques from thermodynamic geometry, whereby we match optimal solutions to protocols parameterised by their thermodynamic length. We characterise the optimal protocols for continuous-variable Gaussian machines, which form a crucial class in the study of thermodynamics for microscopic systems.
We study the statistics of the efficiency in a class of isothermal cyclic machines with realistic coupling between the internal degrees of freedom. We derive, under fairly general assumptions, the probability distribution function for the efficiency. We find that the macroscopic efficiency is always equal to the most likely efficiency, and it lies in an interval whose boundaries are universal as they only depend on the input and output thermodynamic forces, and not on the details of the machine. The machine achieves the upper boundary of such an interval only in the limit of tight coupling. Furthermore, we find that the tight coupling limit is a necessary, yet not sufficient, condition for the engine to perform close to the reversible efficiency. The reversible efficiency is the least likely regardless of the coupling strength, in agreement with previous studies. By using a large deviation formalism we derive a fluctuation relation for the efficiency which holds for any number of internal degrees of freedom in the system.
An approach for simulating bionanosystems, such as viruses and ribosomes, is presented. This calibration-free approach is based on an all-atom description for bionanosystems, a universal interatomic force field, and a multiscale perspective. The supramillion-atom nature of these bionanosystems prohibits the use of a direct molecular dynamics approach for phenomena like viral structural transitions or self-assembly that develop over milliseconds or longer. A key element of these multiscale systems is the cross-talk between, and consequent strong coupling of, processes over many scales in space and time. We elucidate the role of interscale cross-talk and overcome bionanosystem simulation difficulties with automated construction of order parameters (OPs) describing supra-nanometer scale structural features, construction of OP dependent ensembles describing the statistical properties of atomistic variables that ultimately contribute to the entropies driving the dynamics of the OPs, and the derivation of a rigorous equation for the stochastic dynamics of the OPs. Since the atomic scale features of the system are treated statistically, several ensembles are constructed that reflect various experimental conditions. The theory provides a basis for a practical, quantitative bionanosystem modeling approach that preserves the cross-talk between the atomic and nanoscale features. A method for integrating information from nanotechnical experimental data in the derivation of equations of stochastic OP dynamics is also introduced.
We develop and test a computational framework to study heat exchange in interacting, nonequilibrium open quantum systems. Our iterative full counting statistics path integral (iFCSPI) approach extends a previously well-established influence functional path integral method, by going beyond reduced system dynamics to provide the cumulant generating function of heat exchange. The method is straightforward; we implement it for the nonequilibrium spin boson model to calculate transient and long-time observables, focusing on the steady-state heat current flowing through the system under a temperature difference. Results are compared to perturbative treatments and demonstrate good agreement in the appropriate limits. The challenge of converging nonequilibrium quantities, currents and high order cumulants, is discussed in detail. The iFCSPI, a numerically exact technique, naturally captures strong system-bath coupling and non-Markovian effects of the environment. As such, it is a promising tool for probing fundamental questions in quantum transport and quantum thermodynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا