Do you want to publish a course? Click here

Topological 1D Gravity, KP Hierarchy, and Orbifold Euler Characteristics of $overline{mathcal M}_{g,n}$

105   0   0.0 ( 0 )
 Added by Jian Zhou
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work we study the tau-function $Z^{1D}$ of the KP hierarchy specified by the topological 1D gravity. As an application, we present two types of algorithms to compute the orbifold Euler characteristics of $overline{mathcal M}_{g,n}$. The first is to use (fat or thin) topological recursion formulas emerging from the Virasoro constraints for $Z^{1D}$; and the second is to use a formula for the connected $n$-point functions of a KP tau-function in terms of its affine coordinates on the Sato Grassmannian. This is a sequel to an earlier work.



rate research

Read More

323 - V. Prokofev , A. Zabrodin 2019
We consider solutions of the matrix KP hierarchy that are trigonometric functions of the first hierarchical time $t_1=x$ and establish the correspondence with the spin generalization of the trigonometric Calogero-Moser system on the level of hierarchies. Namely, the evolution of poles $x_i$ and matrix residues at the poles $a_i^{alpha}b_i^{beta}$ of the solutions with respect to the $k$-th hierarchical time of the matrix KP hierarchy is shown to be given by the Hamiltonian flow with the Hamiltonian which is a linear combination of the first $k$ higher Hamiltonians of the spin trigonometric Calogero-Moser system with coordinates $x_i$ and with spin degrees of freedom $a_i^{alpha}, , b_i^{beta}$. By considering evolution of poles according to the discrete time matrix KP hierarchy we also introduce the integrable discrete time version of the trigonometric spin Calogero-Moser system.
150 - A. Zabrodin 2009
A fat slit is a compact domain in the upper half plane bounded by a curve with endpoints on the real axis and a segment of the real axis between them. We consider conformal maps of the upper half plane to the exterior of a fat slit parameterized by harmonic moments of the latter and show that they obey an infinite set of Lax equations for the dispersionless KP hierarchy. Deformation of a fat slit under changing a particular harmonic moment can be treated as a growth process similar to the Laplacian growth of domains in the whole plane. This construction extends the well known link between solutions to the dispersionless KP hierarchy and conformal maps of slit domains in the upper half plane and provides a new, large family of solutions.
We prove that the moduli spaces of curves of genus 22 and 23 are of general type. To do this, we calculate certain virtual divisor classes of small slope associated to linear series of rank 6 with quadric relations. We then develop new tropical methods for studying linear series and independence of quadrics and show that these virtual classes are represented by effective divisors.
We study smoothing of pencils of curves on surfaces with normal crossings. As a consequence we show that the canonical divisor of $overline{mathcal{M}}_{g,n}$ is not pseudo-effective in some range, implying that $overline{mathcal{M}}_{12,6},overline{mathcal{M}}_{12,7},overline{mathcal{M}}_{13,4}$ and $overline{mathcal{M}}_{14,3}$ are uniruled. We provide upper bounds for the Kodaira dimension of $overline{mathcal{M}}_{12,8}$ and $overline{mathcal{M}}_{16}$. We also show that the moduli of $(4g+5)$-pointed hyperelliptic curves $mathcal{H}_{g,4g+5}$ is uniruled. Together with a recent result of Schwarz, this concludes the Kodaira classification for moduli of pointed hyperelliptic curves.
105 - A.A. Lykov , V.A. Malyshev 2016
This paper contains a rigorous mathematical example of direct derivation of the system of Euler hydrodynamic equations from Hamiltonian equations for N point particle system as N tends to infinity. Direct means that the following standard tools are not used in the proof: stochastic dynamics, thermodynamics, Boltzmann kinetic equations, correlation functions approach by N. N. Bogolyubov.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا