No Arabic abstract
Thermoelectric properties of single crystal Ta2PdSe6 is investigated by means of transport measurements, and a density functional calculation. We found a giant Peltier conductivity of 100 Acm-1K-1 at 10 K and successfully explained it by means of conventional semiconductor theory. We concluded that an uncompensated semimetal, high mobility, and heavy effective mass are responsible for the giant Peltier conductivity. Our finding opens a new ground in the field of thermoelectrics to explore much better semimetals for a new possible application such as an electric current generator for a superconducting magnet.
Transition-metal dichalcogenides (WTe$_2$ and MoTe$_2$) have drawn much attention, recently, because of the nonsaturating extremely large magnetoresistance (XMR) observed in these compounds in addition to the predictions of likely type-II Weyl semimetals. Contrary to the topological insulators or Dirac semimetals where XMR is linearly dependent on the field, in WTe$_2$ and MoTe$_2$ the XMR is nonlinearly dependent on the field, suggesting an entirely different mechanism. Electron-hole compensation has been proposed as a mechanism of this nonsaturating XMR in WTe$_2$, while it is yet to be clear in the case of MoTe$_2$ which has an identical crystal structure of WTe$_2$ at low temperatures. In this paper, we report low-energy electronic structure and Fermi surface topology of MoTe$_2$ using angle-resolved photoemission spectrometry (ARPES) technique and first-principle calculations, and compare them with that of WTe$_2$ to understand the mechanism of XMR. Our measurements demonstrate that MoTe$_2$ is an uncompensated semimetal, contrary to WTe$_2$ in which compensated electron-hole pockets have been identified, ruling out the applicability of charge compensation theory for the nonsaturating XMR in MoTe$_2$. In this context, we also discuss the applicability of the existing other conjectures on the XMR of these compounds.
A magnetic Weyl semimetal is a recent focus of extensive research as it may exhibit large and robust transport phenomena associated with topologically protected Weyl points in momentum space. Since a magnetic texture provides a handle for the configuration of the Weyl points and its transport response, understanding of magnetic dynamics should form a basis of future control of a topological magnet. Mn3Sn is an example of an antiferromagnetic Weyl semimetal that exhibits a large response comparable to the one observed in ferromagnets despite a vanishingly small magnetization. The non-collinear spin order in Mn3Sn can be viewed as a ferroic order of cluster magnetic octupole and breaks the time-reversal symmetry, stabilizing Weyl points and the significantly enhanced Berry curvature near the Fermi energy. Here we report our first observation of time-resolved octupole oscillation in Mn3Sn. In particular, we find the giant effective damping of the octupole dynamics, and it is feasible to conduct an ultrafast switching at < 10 ps, a hundred times faster than the case of spin-magnetization in a ferromagnet. Moreover, high domain wall velocity over 10 km/s is theoretically predicted. Our work paves the path towards realizing ultrafast electronic devices using the topological antiferromagnet.
The Weyl semimetal NbP exhibits an extremely large magnetoresistance (MR) and an ultra-high mobility. The large MR originates from a combination of the nearly perfect compensation between electron- and hole-type charge carriers and the high mobility, which is relevant to the topological band structure. In this work we report on temperature- and field-dependent thermopower and thermal conductivity experiments on NbP. Additionally, we carried out complementary heat capacity, magnetization, and electrical resistivity measurements. We found a giant adiabatic magnetothermopower with a maximum of 800 $mu$V/K at 50 K in a field of 9 T. Such large effects have been observed rarely in bulk materials. We suggest that the origin of this effect might be related to the high charge-carrier mobility. We further observe pronounced quantum oscillations in both thermal conductivity and thermopower. The obtained frequencies compare well with our heat capacity and magnetization data.
We report the observation of colossal positive magnetoresistance (MR) in single crystalline, high mobility TaAs2 semimetal. The excellent fit of MR by a single quadratic function of the magnetic field B over a wide temperature range (T = 2-300 K) suggests the semiclassical nature of the MR. The measurements of Hall effect and Shubnikov-de Haas oscillations, as well as band structure calculations suggest that the giant MR originates from the nearly perfectly compensated electrons and holes in TaAs2. The quadratic MR can even exceed 1,200,000% at B = 9 T and T = 2 K, which is one of the largest values among those of all known semi-metallic compounds including the very recently discovered WTe2 and NbSb2. The giant positive magnetoresistance in TaAs2, which not only has a fundamentally different origin from the negative colossal MR observed in magnetic systems, but also provides a nice complemental system that will be beneficial for applications in magnetoelectronic devices
We report the observation of anomalous peak structures induced by hybridized magnon-phonon excitation (magnon polarons) in the magnetic field dependence of the spin Peltier effect (SPE) in a Lu$_{2}$Bi$_{1}$Fe$_{4}$Ga$_{1}$O$_{12}$ (BiGa:LuIG) with Pt contact. The SPE peaks coincide with magnetic fields tuned to the threshold of magnon-polaron formation, consistent with the previous observation in the spin Seebeck effect. The enhancement of SPE is attributed to the lifetime increase in spin current caused by magnon-phonon hybridization in BiGa:LuIG.