No Arabic abstract
Spherical gravitational wave is strictly forbidden in vacuum space in frame of general relativity by the Birkhoff theorem. We prove that spherical gravitational waves do exist in non-linear massive gravity, and find the exact solution. Further more, we find exact gravitational wave solution with a singular string by meticulous studies of familiar equation, in which the horizon becomes non-compact. We analyze the properties of the congruence of graviton rays of these wave solution. We clarify subtle points of dispersion relation, velocity and mass of graviton in massive gravity with linear perturbations. We find that the graviton ray can be null in massive gravity by considering full back reaction of the massive gravitational waves to the metric. We demonstrate that massive gravity has deep and fundamental discrepancy from general relativity, for whatever a tiny mass of the graviton.
We demonstrate how plane fronted waves with colliding wave fronts are the asymptotic limit of spherical electromagnetic and gravitational waves. In the case of the electromagnetic waves we utilize Batemans representation of radiative solutions of Maxwells vacuum field equations. The gravitational case involves a novel form of the radiative Robinson--Trautman solutions of Einsteins vacuum field equations.
We study a theory of massive tensor gravitons which predicts blue-tilted and largely amplified primordial gravitational waves. After inflation, while their mass is significant until it diminishes to a small value, gravitons are diluted as non-relativistic matter and hence their amplitude can be substantially amplified compared to the massless gravitons which decay as radiation. We show that such gravitational waves can be detected by interferometer experiments, even if their signal is not observed on the CMB scales.
We have set up and tested a pipeline for processing the data from a spherical gravitational wave detector with six transducers. The algorithm exploits the multichannel capability of the system and provides a list of candidate events with their arrival direction. The analysis starts with the conversion of the six detector outputs into the scalar and the five quadrupolar modes of the sphere, which are proportional to the corresponding gravitational wave spherical components. Event triggers are then generated by an adaptation of the WaveBurst algorithm. Event validation and direction reconstruction are made by cross-checking two methods of different inspiration: geometrical (lowest eigenvalue) and probabilistic (maximum likelihood). The combination of the two methods is able to keep substantially unaltered the efficiency and can reduce drastically the detections of fake events (to less than ten per cent). We show a quantitative test of these ideas by simulating the operation of the resonant spherical detector miniGRAIL, whose planned sensitivity in its frequency band (few hundred Hertzs around 3 kHz) is comparable with the present LIGO one.
We consider the gravitational radiation in conformal gravity theory. We perturb the metric from flat Mikowski space and obtain the wave equation after introducing the appropriate transformation for perturbation. We derive the effective energy-momentum tensor for the gravitational radiation, which can be used to determine the energy carried by gravitational waves.
The direct detection of gravitational waves now provides a new channel of testing gravity theories. Despite that the parametrized post-Einsteinian framework is a powerful tool to quantitatively investigate effects of modification of gravity theory, the gravitational waveform in this framework is still extendable. One of such extensions is to take into account the gradual activation of dipole radiation due to massive fields, which are still only very weakly constrained if their mass $m$ is greater than $10^{-16}$ eV from pulsar observations. Ground-based gravitational-wave detectors, LIGO, Virgo, and KAGRA, are sensitive to this activation in the mass range, $10^{-14}$ eV $lesssim m lesssim 10^{-13}$ eV. Hence, we discuss a dedicated test for dipole radiation due to a massive field using the LIGO-Virgo collaborations open data. In addition, assuming Einstein-dilaton-Gauss-Bonnet (EdGB) type coupling, we combine the results of the analysis of the binary black hole events to obtain the 90% confidence level constraints on the coupling parameter $alpha_{rm EdGB}$ as $sqrt{alpha_{rm EdGB}} lesssim 2.47$ km for any mass less than $6 times 10^{-14}$ eV for the first time, including $sqrt{alpha_{rm EdGB}} lesssim 1.85$ km in the massless limit.