Bayesian evaluation of residual production cross sections in proton induced spallation reactions


Abstract in English

The Bayesian neural network (BNN) method is used to construct a predictive model for fragment prediction of proton induced spallation reactions with the guidance of a simplified EPAX formula. Compared to the experimental data, it is found that the BNN + sEPAX model can reasonably extrapolate with less information compared with BNN method. The BNN + sEPAX method provides a new approach to predict the energy-dependent residual cross sections produced in proton-induced spallation reactions from tens of MeV/u up to several GeV/u.

Download