Do you want to publish a course? Click here

Tame Parahoric Nonabelian Hodge Correspondence in Positive Characteristic over Algebraic Curves

94   0   0.0 ( 0 )
 Added by Hao Sun
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Let $G$ be a reductive group, and let $X$ be an algebraic curve over an algebraically closed field $k$ with positive characteristic. We prove a version of nonabelian Hodge correspondence for $G$-local systems over $X$ and $G$-Higgs bundles over the Frobenius twist $X$ with first order poles. To obtain a general statement of the correspondence, we introduce the language of parahoric group schemes to establish the correspondence.



rate research

Read More

Let $pi_1(C)$ be the algebraic fundamental group of a smooth connected affine curve, defined over an algebraically closed field of characteristic $p>0$ of countable cardinality. Let $N$ be a normal (resp. characteristic) subgroup of $pi_1(C)$. Under the hypothesis that the quotient $pi_1(C)/N$ admits an infinitely generated Sylow $p$-subgroup, we prove that $N$ is indeed isomorphic to a normal (resp. characteristic) subgroup of a free profinite group of countable cardinality. As a consequence, every proper open subgroup of $N$ is a free profinite group of countable cardinality.
We study a pair of Calabi-Yau threefolds X and M, fibered in non-principally polarized Abelian surfaces and their duals, and an equivalence D^b(X) = D^b(M), building on work of Gross, Popescu, Bak, and Schnell. Over the complex numbers, X is simply connected while pi_1(M) = (Z/3)^2. In characteristic 3, we find that X and M have different Hodge numbers, which would be impossible in characteristic 0. In an appendix, we give a streamlined proof of Abuafs result that the ring H^*(O) is a derived invariant of complex threefolds and fourfolds. A second appendix by Alexander Petrov gives a family of higher-dimensional examples to show that h^{0,3} is not a derived invariant in any positive characteristic.
We start with a curve over an algebraically closed ground field of positive characteristic $p>0$. By using specialization techniques, under suitable natural coprimality conditions, we prove a cohomological Simpson Correspondence between the moduli space of Higgs bundles and the one of connections on the curve. We also prove a new $p$-multiplicative periodicity concerning the cohomology rings of Dolbeault moduli spaces of degrees differing by a factor of $p$. By coupling this $p$-periodicity in characteristic $p$ with lifting/specialization techniques in mixed characteristic, we find, in arbitrary characteristic, cohomology ring isomorphisms between the cohomology rings of Dolbeault moduli spaces for different degrees coprime to the rank. It is interesting that this last result is proved as follows: we prove a weaker version in positive characteristic; we lift and strengthen the weaker version to the result in characteristic zero; finally, we specialize the result to positive characteristic. The moduli spaces we work with admit certain natural morphisms (Hitchin, de Rham-Hitchin, Hodge-Hitchin), and all the cohomology ring isomorphisms we find are filtered isomorphisms for the resulting perverse Leray filtrations.
136 - Adrian Langer 2013
We study Lie algebroids in positive characteristic and moduli spaces of their modules. In particular, we show a Langtons type theorem for the corresponding moduli spaces. We relate Langtons construction to Simpsons construction of gr-semistable Griffiths transverse filtration. We use it to prove a recent conjecture of Lan-Sheng-Zuo that semistable systems of Hodge sheaves on liftable varieties in positive characteristic are strongly semistable.
This paper extends the nonabelian Hodge correspondence for Kaehler manifolds to a larger class of hermitian metrics on complex manifolds called balanced of Hodge-Riemann type. Essentially, it grows out of a few key observations so that the known results, especially the Donaldson-Uhlenbeck-Yau theorem and Corlettes theorem, can be applied in our setting. Though not necessarily Kaehler, we show that the Sampson-Siu Theorem proving that harmonic maps are pluriharmonic remains valid for a slightly smaller class by using the known argument. Special important examples include those balanced metrics arising from multipolarizations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا