Do you want to publish a course? Click here

NGTS clusters survey -- III: A low-mass eclipsing binary in the Blanco 1 open cluster spanning the fully convective boundary

80   0   0.0 ( 0 )
 Added by Gareth Smith
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the discovery and characterisation of an eclipsing binary identified by the Next Generation Transit Survey in the $sim$115 Myr old Blanco 1 open cluster. NGTS J0002-29 comprises three M dwarfs: a short-period binary and a companion in a wider orbit. This system is the first well-characterised, low-mass eclipsing binary in Blanco 1. With a low mass ratio, a tertiary companion and binary components that straddle the fully convective boundary, it is an important benchmark system, and one of only two well-characterised, low-mass eclipsing binaries at this age. We simultaneously model light curves from NGTS, TESS, SPECULOOS and SAAO, radial velocities from VLT/UVES and Keck/HIRES, and the systems spectral energy distribution. We find that the binary components travel on circular orbits around their common centre of mass in $P_{rm orb} = 1.09800524 pm 0.00000038$ days, and have masses $M_{rm pri}=0.3978pm 0.0033$ M$_{odot}$ and $M_{rm sec}=0.2245pm 0.0018$ M$_{odot}$, radii $R_{rm pri}=0.4037pm 0.0048$ R$_{odot}$ and $R_{rm sec}=0.2759pm 0.0055$ R$_{odot}$, and effective temperatures $T_{rm pri}=3372,^{+44}_{-37}$ K and $T_{rm sec}=3231,^{+38}_{-31}$ K. We compare these properties to the predictions of seven stellar evolution models, which typically imply an inflated primary. The system joins a list of 19 well-characterised, low-mass, sub-Gyr, stellar-mass eclipsing binaries, which constitute some of the strongest observational tests of stellar evolution theory at low masses and young ages.



rate research

Read More

We have discovered a new, near-equal mass, eclipsing M dwarf binary from the Next Generation Transit Survey. This system is only one of 3 field age ($>$ 1 Gyr), late M dwarf eclipsing binaries known, and has a period of 1.74774 days, similar to that of CM~Dra and KOI126. Modelling of the eclipses and radial velocities shows that the component masses are $M_{rm pri}$=0.17391$^{+0.00153}_{0.00099}$ $M_{odot}$, $M_{rm sec}$=0.17418$^{+0.00193}_{-0.00059}$ $M_{odot}$; radii are $R_{rm pri}$=0.2045$^{+0.0038}_{-0.0058}$ $R_{odot}$, $R_{rm sec}$=0.2168$^{+0.0047}_{-0.0048}$ $R_{odot}$. The effective temperatures are $T_{rm pri} = 2995,^{+85}_{-105}$ K and $T_{rm sec} = 2997,^{+66}_{-101}$ K, consistent with M5 dwarfs and broadly consistent with main sequence models. This pair represents a valuable addition which can be used to constrain the mass-radius relation at the low mass end of the stellar sequence.
We determine rotation periods for 127 stars in the ~115 Myr old Blanco 1 open cluster using ~200 days of photometric monitoring with the Next Generation Transit Survey (NGTS). These stars span F5-M3 spectral types (1.2 $gtrsim M gtrsim$ 0.3 M$_{odot}$) and increase the number of known rotation periods in Blanco 1 by a factor of four. We determine rotation periods using three methods: Gaussian process (GP) regression, generalised autocorrelation (G-ACF) and Lomb-Scargle (LS) periodograms, and find that GPs and G-ACF are more applicable to evolving spot modulation patterns. Between mid-F and mid-K spectral types, single stars follow a well-defined rotation sequence from ~2 to 10 days, whereas stars in photometric multiple systems typically rotate faster. This may suggest that the presence of a moderate-to-high mass ratio companion inhibits angular momentum loss mechanisms during the early pre-main sequence, and this signature has not been erased at ~100 Myr. The majority of mid-F to mid-K stars display evolving modulation patterns, whereas most M stars show stable modulation signals. This morphological change coincides with the shift from a well-defined rotation sequence (mid-F to mid-K stars) to a broad rotation period distribution (late-K and M stars). Finally, we compare our rotation results for Blanco 1 to the similarly-aged Pleiades: the single star populations in both clusters possess consistent rotation period distributions, which suggests that the angular momentum evolution of stars follows a well-defined pathway that is, at least for mid-F to mid-K stars, strongly imprinted by ~100 Myr.
We present the characterization of CRTS J055255.7$-$004426 (=THOR 42), a young eclipsing binary comprising two pre-main sequence M dwarfs (combined spectral type M3.5). This nearby (103 pc), short-period (0.859 d) system was recently proposed as a member of the $sim$24 Myr-old 32 Orionis Moving Group. Using ground- and space-based photometry in combination with medium- and high-resolution spectroscopy, we model the light and radial velocity curves to derive precise system parameters. The resulting component masses and radii are $0.497pm0.005$ and $0.205pm0.002$ $rm{M}_{odot}$, and $0.659pm0.003$ and $0.424pm0.002$ $rm{R}_{odot}$, respectively. With mass and radius uncertainties of $sim$1 per cent and $sim$0.5 per cent, respectively, THOR 42 is one of the most precisely characterized pre-main sequence eclipsing binaries known. Its systemic velocity, parallax, proper motion, colour-magnitude diagram placement and enlarged radii are all consistent with membership in the 32 Ori Group. The system provides a unique opportunity to test pre-main sequence evolutionary models at an age and mass range not well constrained by observation. From the radius and mass measurements we derive ages of 22-26 Myr using standard (non-magnetic) models, in excellent agreement with the age of the group. However, none of the models can simultaneously reproduce the observed mass, radius, temperature and luminosity of the coeval components. In particular, their H-R diagram ages are 2-4 times younger and we infer masses $sim$50 per cent smaller than the dynamical values.
The Gaia M-dwarf gap is a significant under-density of stars observed near $M_G = 10.2$ in a color-magnitude diagram for stars within 200 pc of the Sun. It has been proposed that the gap is the manifestation of structural instabilities within stellar interiors due to non-equilibrium $^{3}$He fusion prior to some stars becoming fully convective. To test this hypothesis, we use Dartmouth stellar evolution models, MARCS model atmospheres, and simple stellar population synthesis to create synthetic $M_G$-($G_{rm BP} - G_{rm RP})$ color-magnitude diagrams. We confirm that the proposed $^{3}$He instability is responsible for the appearance of the M-dwarf gap. Our synthetic gap shows qualitatively similar features to the observed gap including: its vertical extent in $M_G$, its slope in the color-magnitude diagram, and its relative prominence at bluer colors as compared to redder colors. Furthermore, corresponding over-densities of stars above the gap are reproduced by the models. While qualitatively similar, the synthetic gap is approximately 0.2 magnitudes bluer and, accounting for this color offset, 0.16 magnitudes brighter than the observed gap. Our results reveal that the Gaia M dwarf gap is sensitive to conditions within cores of M dwarf stars, making the gap a powerful tool for testing the physics of M dwarf stars and potentially using M dwarfs to understand the local star formation history.
114 - J. R. Stauffer 2010
We have used the Spitzer Space Telescope to obtain Multiband Imaging Photometer for Spitzer (MIPS) 24 um photometry for 37 members of the ~100 Myr old open cluster Blanco 1. For the brightest 25 of these stars (where we have 3sigma uncertainties less than 15%), we find significant mid-IR excesses for eight stars, corresponding to a debris disk detection frequency of about 32%. The stars with excesses include two A stars, four F dwarfs and two G dwarfs. The most significant linkage between 24 um excess and any other stellar property for our Blanco 1 sample of stars is with binarity. Blanco 1 members that are photometric binaries show few or no detected 24 um excesses whereas a quarter of the apparently single Blanco 1 members do have excesses. We have examined the MIPS data for two other clusters of similar age to Blanco 1 -- NGC 2547 and the Pleiades. The AFGK photometric binary star members of both of these clusters also show a much lower frequency of 24 um excesses compared to stars that lie near the single-star main sequence. We provide a new determination of the relation between V-Ks color and Ks-[24] color for main sequence photospheres based on Hyades members observed with MIPS. As a result of our analysis of the Hyades data, we identify three low mass Hyades members as candidates for having debris disks near the MIPS detection limit.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا