Do you want to publish a course? Click here

Optical study on electronic structure of the locally non-centrosymmetric CeRh$_2$As$_2$

339   0   0.0 ( 0 )
 Added by Shin-ichi Kimura
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electronic structures of the heavy-fermion superconductor CeRh$_2$As$_2$ with the local inversion symmetry breaking and the reference material LaRh$_2$As$_2$ have been investigated by using experimental optical conductivity ($sigma_1(omega)$) spectra and first-principal DFT calculations. In the low-temperature $sigma_1(omega)$ spectra of CeRh$_2$As$_2$, a $4f$-conduction electron hybridization and heavy quasiparticles are clearly indicated by a mid-infrared peak and a narrow Drude peak. In LaRh$_2$As$_2$, these features are absent in the $sigma_1(omega)$ spectrum, however, it can nicely be reproduced by DFT calculations. For both compounds, the combination between a local inversion symmetry breaking and a large spin-orbit (SO) interaction plays an important role for the electronic structure, however, the SO splitting bands could not be resolved in the $sigma_1(omega)$ spectra due to the small SO splitting size.



rate research

Read More

Recent discovery of superconductivity in CeRh$_2$As$_2$ clarified an unusual $H$-$T$ phase diagram with two superconducting phases [Khim et al. arXiv:2101.09522]. The experimental observation has been interpreted based on the even-odd parity transition characteristic of locally noncentrosymmetric superconductors. Indeed, the inversion symmetry is locally broken at the Ce site, and CeRh$_2$As$_2$ molds a new class of exotic superconductors. The low-temperature and high-field superconducting phase is a candidate for the odd-parity pair-density-wave state, suggesting a possibility of topological superconductivity as spin-triplet superconductors are. In this paper, we first derive the formula expressing the $mathbb{Z}_2$ invariant of glide symmetric and time-reversal symmetry broken superconductors by the number of Fermi surfaces on a glide invariant line. Next, we conduct a first-principles calculation for the electronic structure of CeRh$_2$As$_2$. Combining the results, we show that the field-induced odd-parity superconducting phase of CeRh$_2$As$_2$ is a platform of topological crystalline superconductivity protected by the nonsymmorphic glide symmetry and accompanied by boundary Majorana fermions.
209 - Y. K. Kim , Hyungju Oh , Chul Kim 2010
We performed angle resolved photoelectron spectroscopy (ARPES) studies on mechanically detwinned BaFe2As2. We observe clear band dispersions and the shapes and characters of the Fermi surfaces are identified. Shapes of the two hole pockets around the {Gamma}-point are found to be consistent with the Fermi surface topology predicted in the orbital ordered states. Dirac-cone like band dispersions near the {Gamma}-point are clearly identified as theoretically predicted. At the X-point, split bands remain intact in spite of detwinning, barring twinning origin of the bands. The observed band dispersions are compared with calculated band structures. With a magnetic moment of 0.2 ?B per iron atom, there is a good agreement between the calculation and experiment.
We present a method for producing high quality KCo2As2 crystals, stable in air and suitable for a variety of measurements. X-ray diffraction, magnetic susceptibility, electrical transport and heat capacity measurements confirm the high quality and an absence of long range magnetic order down to at least 2 K. Residual resistivity values approaching 0.25 $muOmega$~cm are representative of the high quality and low impurity content, and a Sommerfeld coefficient $gamma$ = 7.3 mJ/mol K$^2$ signifies weaker correlations than the Fe-based counterparts. Together with Hall effect measurements, angle-resolved photoemission experiments reveal a Fermi surface consisting of electron pockets at the center and corner of the Brillouin zone, in line with theoretical predictions and in contrast to the mixed carrier types of other pnictides with the ThCr2Si2 structure. A large, linear magnetoresistance of 200% at 14~T, together with an observed linear and hyperbolic, rather than parabolic, band dispersions are unusual characteristics of this metallic compound and may indicate more complex underlying behavior.
We report the physical properties and electronic structure calculations of a layered chromium oxypnictide, Sr$_2$Cr$_3$As$_2$O$_2$, which crystallizes in a Sr$_2$Mn$_3$As$_2$O$_2$-type structure containing both CrO$_2$ planes and Cr$_2$As$_2$ layers. The newly synthesized material exhibits a metallic conduction with a dominant electron-magnon scattering. Magnetic and specific-heat measurements indicate at least two intrinsic magnetic transitions below room temperature. One is an antiferromagnetic transition at 291 K, probably associated with a spin ordering in the Cr$_2$As$_2$ layers. Another transition is broad, occurring at around 38 K, and possibly due to a short-range spin order in the CrO$_2$ planes. Our first-principles calculations indicate predominant two-dimensional antiferromagnetic exchange couplings, and suggest a KG-type (i.e. K$_2$NiF$_4$ type for CrO$_2$ planes and G type for Cr$_2$As$_2$ layers) magnetic structure, with reduced moments for both Cr sublattices. The corresponding electronic states near the Fermi energy are mostly contributed from Cr-3$d$ orbitals which weakly (modestly) hybridize with the O-2$p$ (As-4$p$) orbitals in the CrO$_2$ (Cr$_2$As$_2$) layers. The bare bandstructure density of states at the Fermi level is only $sim$1/4 of the experimental value derived from the low-temperature specific-heat data, consistent with the remarkable electron-magnon coupling. The title compound is argued to be a possible candidate to host superconductivity.
The application of pressure as well as the successive substitution of Ru with Fe in the hidden order (HO) compound URu$_2$Si$_2$ leads to the formation of the large moment antiferromagnetic phase (LMAFM). Here we have investigated the substitution series URu$_{2-x}$Fe$_x$Si$_2$ with $x$ = 0.2 and 0.3 with non-resonant inelastic x-ray scattering (NIXS) and 4$f$ core-level photoelectron spectroscopy with hard x-rays (HAXPES). NIXS shows that the substitution of Fe has no impact on the symmetry of the ground-state wave function. In HAXPES we find no shift of spectral weight that would be indicative for a change of the 5$f$-electron count. Consequently, changes in the exchange interaction $cal{J}$ due to substitution must be minor so that the conjecture of chemical pressure seems unlikely. An alternative scenario is discussed, namely the formation of long range magnetic order due the substitution induced local enhancement of the magnetization in the vicinity of the $f$-electron ions while the overall electronic structure remains unchanged.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا