No Arabic abstract
As an effective way to integrate the information contained in multiple medical images under different modalities, medical image synthesis and fusion have emerged in various clinical applications such as disease diagnosis and treatment planning. In this paper, an invertible and variable augmented network (iVAN) is proposed for medical image synthesis and fusion. In iVAN, the channel number of the network input and output is the same through variable augmentation technology, and data relevance is enhanced, which is conducive to the generation of characterization information. Meanwhile, the invertible network is used to achieve the bidirectional inference processes. Due to the invertible and variable augmentation schemes, iVAN can not only be applied to the mappings of multi-input to one-output and multi-input to multi-output, but also be applied to one-input to multi-output. Experimental results demonstrated that the proposed method can obtain competitive or superior performance in comparison to representative medical image synthesis and fusion methods.
Invertible networks have various benefits for image denoising since they are lightweight, information-lossless, and memory-saving during back-propagation. However, applying invertible models to remove noise is challenging because the input is noisy, and the reversed output is clean, following two different distributions. We propose an invertible denoising network, InvDN, to address this challenge. InvDN transforms the noisy input into a low-resolution clean image and a latent representation containing noise. To discard noise and restore the clean image, InvDN replaces the noisy latent representation with another one sampled from a prior distribution during reversion. The denoising performance of InvDN is better than all the existing competitive models, achieving a new state-of-the-art result for the SIDD dataset while enjoying less run time. Moreover, the size of InvDN is far smaller, only having 4.2% of the number of parameters compared to the most recently proposed DANet. Further, via manipulating the noisy latent representation, InvDN is also able to generate noise more similar to the original one. Our code is available at: https://github.com/Yang-Liu1082/InvDN.git.
Unsupervised domain adaptation (UDA) methods have shown their promising performance in the cross-modality medical image segmentation tasks. These typical methods usually utilize a translation network to transform images from the source domain to target domain or train the pixel-level classifier merely using translated source images and original target images. However, when there exists a large domain shift between source and target domains, we argue that this asymmetric structure could not fully eliminate the domain gap. In this paper, we present a novel deep symmetric architecture of UDA for medical image segmentation, which consists of a segmentation sub-network, and two symmetric source and target domain translation sub-networks. To be specific, based on two translation sub-networks, we introduce a bidirectional alignment scheme via a shared encoder and private decoders to simultaneously align features 1) from source to target domain and 2) from target to source domain, which helps effectively mitigate the discrepancy between domains. Furthermore, for the segmentation sub-network, we train a pixel-level classifier using not only original target images and translated source images, but also original source images and translated target images, which helps sufficiently leverage the semantic information from the images with different styles. Extensive experiments demonstrate that our method has remarkable advantages compared to the state-of-the-art methods in both cross-modality Cardiac and BraTS segmentation tasks.
Novel multimodal imaging methods are capable of generating extensive, super high resolution datasets for preclinical research. Yet, a massive lack of annotations prevents the broad use of deep learning to analyze such data. So far, existing generative models fail to mitigate this problem because of frequent labeling errors. In this paper, we introduce a novel generative method which leverages real anatomical information to generate realistic image-label pairs of tumours. We construct a dual-pathway generator, for the anatomical image and label, trained in a cycle-consistent setup, constrained by an independent, pretrained segmentor. The generated images yield significant quantitative improvement compared to existing methods. To validate the quality of synthesis, we train segmentation networks on a dataset augmented with the synthetic data, substantially improving the segmentation over baseline.
Recently 3D volumetric organ segmentation attracts much research interest in medical image analysis due to its significance in computer aided diagnosis. This paper aims to address the pancreas segmentation task in 3D computed tomography volumes. We propose a novel end-to-end network, Globally Guided Progressive Fusion Network, as an effective and efficient solution to volumetric segmentation, which involves both global features and complicated 3D geometric information. A progressive fusion network is devised to extract 3D information from a moderate number of neighboring slices and predict a probability map for the segmentation of each slice. An independent branch for excavating global features from downsampled slices is further integrated into the network. Extensive experimental results demonstrate that our method achieves state-of-the-art performance on two pancreas datasets.
Domain Adaptation (DA) has the potential to greatly help the generalization of deep learning models. However, the current literature usually assumes to transfer the knowledge from the source domain to a specific known target domain. Domain Agnostic Learning (DAL) proposes a new task of transferring knowledge from the source domain to data from multiple heterogeneous target domains. In this work, we propose the Domain-Agnostic Learning framework with Anatomy-Consistent Embedding (DALACE) that works on both domain-transfer and task-transfer to learn a disentangled representation, aiming to not only be invariant to different modalities but also preserve anatomical structures for the DA and DAL tasks in cross-modality liver segmentation. We validated and compared our model with state-of-the-art methods, including CycleGAN, Task Driven Generative Adversarial Network (TD-GAN), and Domain Adaptation via Disentangled Representations (DADR). For the DA task, our DALACE model outperformed CycleGAN, TD-GAN ,and DADR with DSC of 0.847 compared to 0.721, 0.793 and 0.806. For the DAL task, our model improved the performance with DSC of 0.794 from 0.522, 0.719 and 0.742 by CycleGAN, TD-GAN, and DADR. Further, we visualized the success of disentanglement, which added human interpretability of the learned meaningful representations. Through ablation analysis, we specifically showed the concrete benefits of disentanglement for downstream tasks and the role of supervision for better disentangled representation with segmentation consistency to be invariant to domains with the proposed Domain-Agnostic Module (DAM) and to preserve anatomical information with the proposed Anatomy-Preserving Module (APM).