No Arabic abstract
Recent works have indicated that the $^{56}$Ni masses estimated for Stripped Envelope SNe (SESNe) are systematically higher than those estimated for SNe II. Although this may suggest a distinct progenitor structure between these types of SNe, the possibility remains that this may be caused by observational bias. One important possible bias is that SESNe with low $^{56}$Ni mass are dim, and therefore they are more likely to escape detection. By investigating the distributions of the $^{56}$Ni mass and distance for the samples collected from the literature, we find that the current literature SESN sample indeed suffers from a significant observational bias, i.e., objects with low $^{56}$Ni mass - if they exist - will be missed, especially at larger distances. Note, however, that those distant objects in our sample are mostly SNe Ic-BL. We also conducted mock observations assuming that the $^{56}$Ni mass distribution for SESNe is intrinsically the same with that for SNe II. We find that the $^{56}$Ni mass distribution of the detected SESNe samples moves toward higher mass than the assumed intrinsic distribution, because of the difficulty in detecting the low-$^{56}$Ni mass SESNe. These results could explain the general trend of the higher $^{56}$Ni mass distribution (than SNe II) of SESNe found thus far in the literature. However, further finding clear examples of low-$^{56}$Ni mass SESNe ($leq 0.01M_{odot}$) is required to add weight to this hypothesis. Also, the objects with high $^{56}$Ni mass ($gtrsim 0.2 M_{odot}$) are not explained by our model, which may require an additional explanation.
The mass of synthesised radioactive material is an important power source for all supernova (SN) types. Anderson 2019 recently compiled literature values and obtained $^{56}$Ni distributions for different core-collapse supernovae (CC-SNe), showing that the $^{56}$Ni distribution of stripped envelope CC-SNe (SE-SNe: types IIb, Ib, and Ic) is highly incompatible with that of hydrogen rich type II SNe (SNe-II). This motivates questions on differences in progenitors, explosion mechanisms, and $^{56}$Ni estimation methods. Here, we re-estimate the nucleosynthetic yields of $^{56}$Ni for a well-observed and well-defined sample of SE-SNe in a uniform manner. This allows us to investigate whether the observed SN-II--SE-SN $^{56}$Ni separation is due to real differences between these SN types, or because of systematic errors in the estimation methods. We compiled a sample of well observed SE-SNe and measured $^{56}$Ni masses through three different methods proposed in the literature. Arnetts rule -as previously shown - gives $^{56}$Ni masses for SE-SNe that are considerably higher than SNe-II. While for the distributions calculated using both the Khatami&Kasen prescription and Tail $^{56}$Ni masses are offset to lower values than `Arnett values, their $^{56}$Ni distributions are still statistically higher than that of SNe II. Our results are strongly driven by a lack of SE-SN with low $^{56}$Ni masses (that are in addition strictly lower limits). The lowest SE-SN $^{56}$Ni mass in our sample is of 0.015M$_odot$, below which are more than 25$%$ of SNe II. We conclude that there exists real, intrinsic differences in the mass of synthesised radioactive material between SNe II and SE-SNe . Any proposed current or future CCSN progenitor scenario and explosion mechanism must be able to explain why and how such differences arise, or outline a yet to be fully explored bias in current SN samples.
We present SN 2019tsf (ZTF19ackjszs) and SN 2019oys (ZTF19abucwzt). These two stripped envelope Type Ib supernovae suddenly showed a (re-)brightening in their late light curves. We investigate this in the context of circumstellar material (CSM) interaction with previously ejected material, a phenomenon that is unusual among SE SNe. We analyse observational data, consisting of optical light curves and spectra. For SN 2019oys we also have detections in radio as well as limits from UV and X-rays. Both light curves show spectacular re-brightening after about 100 days. In the case of SN 2019tsf, the re-brightening is followed by a new period of decline, and the spectra never show signs of narrow emission lines that would indicate CSM interaction. On the contrary, SN 2019oys made a spectral makeover from a Type Ib to a spectrum clearly dominated by CSM interaction at the light curve brightening phase. Deep spectra reveal a plethora of narrow high ionization lines, including coronal lines, and the radio observations show strong emission. The rather similar light curve behaviour indicate CSM interaction as the powering source. For SN 2019oys the evidence for a phase where the ejecta hit H-rich material, likely ejected from the progenitor star, is conspicuous. We observe strong narrow lines of H and He, but also a plethora of high ionization lines, including coronal lines, revealing shock interaction. Spectral simulations of SN 2019oys show two distinct density components, one with density > 1e9/cm3, dominated by somewhat broader, low ionization lines of H I, He I, Na I and Ca II, and one with narrow, high ionization lines at a density about 1e6 /cm3. The former is strongly affected by electron scattering. The evidence for CSM interaction in SN 2019oys is corroborated by detections in radio. On the contrary, for SN 2019tsf, we find little evidence in the spectra for any CSM interaction.
We present an analysis of 507 spectra of 173 stripped-envelope (SE) supernovae (SNe) discovered by the untargeted Palomar Transient Factory (PTF) and intermediate PTF (iPTF) surveys. Our sample contains 55 Type IIb SNe (SNe IIb), 45 Type Ib SNe (SNe Ib), 56 Type Ic SNe (SNe Ic), and 17 Type Ib/c SNe (SNe Ib/c). We compare the SE SN subtypes via measurements of the pseudo-equivalent widths (pEWs) and velocities of the He I $lambdalambda5876, 7065$ and O I $lambda7774$ absorption lines. Consistent with previous work, we find that SNe Ic show higher pEWs and velocities in O I $lambda7774$ compared to SNe IIb and Ib. The pEWs of the He I $lambdalambda5876, 7065$ lines are similar in SNe Ib and IIb after maximum light. The He I $lambdalambda5876, 7065$ velocities at maximum light are higher in SNe Ib compared to SNe IIb. We have identified an anticorrelation between the He I $lambda7065$ pEW and O I $lambda7774$ velocity among SNe IIb and Ib. This can be interpreted as a continuum in the amount of He present at the time of explosion. It has been suggested that SNe Ib and Ic have similar amounts of He, and that lower mixing could be responsible for hiding He in SNe Ic. However, our data contradict this mixing hypothesis. The observed difference in the expansion rate of the ejecta around maximum light of SNe Ic ($V_{mathrm{m}}=sqrt{2E_{mathrm{k}}/M_{mathrm{ej}}}approx15,000$ km s$^{-1}$) and SNe Ib ($V_{mathrm{m}}approx9000$ km s$^{-1}$) would imply an average He mass difference of $sim1.4$ $M_{odot}$, if the other explosion parameters are assumed to be unchanged between the SE SN subtypes. We conclude that SNe Ic do not hide He but lose He due to envelope stripping.
We present observations and analysis of 18 stripped-envelope supernovae observed during 2013 -- 2018. This sample consists of 5 H/He-rich SNe, 6 H-poor/He-rich SNe, 3 narrow lined SNe Ic and 4 broad lined SNe Ic. The peak luminosity and characteristic time-scales of the bolometric light curves are calculated, and the light curves modelled to derive 56Ni and ejecta masses (MNi and Mej). Additionally, the temperature evolution and spectral line velocity-curves of each SN are examined. Analysis of the [O I] line in the nebular phase of eight SNe suggests their progenitors had initial masses $<20$ Msun. The bolometric light curve properties are examined in combination with those of other SE events from the literature. The resulting dataset gives the Mej distribution for 80 SE-SNe, the largest such sample in the literature to date, and shows that SNe Ib have the lowest median Mej, followed by narrow lined SNe Ic, H/He-rich SNe, broad lined SNe Ic, and finally gamma-ray burst SNe. SNe Ic-6/7 show the largest spread of Mej, ranging from $sim 1.2 - 11$ Msun, considerably greater than any other subtype. For all SE-SNe $<$Mej$>=2.8pm{1.5}$ Msun which further strengthens the evidence that SE-SNe arise from low mass progenitors which are typically $<5$ Msun at the time of explosion, again suggesting Mzams $<25$ Msun. The low $<$Mej$>$ and lack of clear bimodality in the distribution implies $<30$ Msun progenitors and that envelope stripping via binary interaction is the dominant evolutionary pathway of these SNe.
We present 645 optical spectra of 73 supernovae (SNe) of Types IIb, Ib, Ic, and broad-lined Ic. All of these types are attributed to the core collapse of massive stars, with varying degrees of intact H and He envelopes before explosion. The SNe in our sample have a mean redshift <cz> = 4200 km/s. Most of these spectra were gathered at the Harvard-Smithsonian Center for Astrophysics (CfA) between 2004 and 2009. For 53 SNe, these are the first published spectra. The data coverage range from mere identification (1-3 spectra) for a few SNe to extensive series of observations (10-30 spectra) that trace the spectral evolution for others, with an average of 9 spectra per SN. For 44 SNe of the 73 SNe presented here, we have well-determined dates of maximum light to determine the phase of each spectrum. Our sample constitutes the most extensive spectral library of stripped-envelope SNe to date. We provide very early coverage (as early as 30 days before V-band max) for photospheric spectra, as well as late-time nebular coverage when the innermost regions of the SNe are visible (as late as 2 years after explosion, while for SN1993J, we have data as late as 11.6 years). This data set has homogeneous observations and reductions that allow us to study the spectroscopic diversity of these classes of stripped SNe and to compare these to SNe associated with gamma-ray bursts. We undertake these matters in follow-up papers.