Do you want to publish a course? Click here

JexoSim 2.0: End-to-End JWST Simulator for Exoplanet Spectroscopy -- Implementation and Case Studies

71   0   0.0 ( 0 )
 Added by Subhajit Sarkar
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recently developed JWST Exoplanet Observation Simulator (JexoSim) simulates transit spectroscopic observations of exoplanets by JWST with each of its four instruments using a time-domain approach. Previously we reported the validation of JexoSim against Pandexo and instrument team simulators. In the present study, we report a substantially enhanced version, JexoSim 2.0, which improves on the original version through incorporation of new noise sources, enhanced treatment of stellar and planetary signals and instrumental effects, as well as improved user-operability and optimisations for increased speed and efficiency. A near complete set of instrument modes for exoplanet time-series observations is now included. In this paper we report the implementation of JexoSim 2.0 and assess performance metrics for JWST in end-member scenarios using the hot Jupiter HD 209458 b and the mini-Neptune K2-18 b. We show how JexoSim can be used to compare performance across the different JWST instruments, selecting an optimal combination of instrument and subarray modes, producing synthetic transmission spectra for each planet. These studies indicate that the 1.4 {mu}m water feature detected in the atmosphere of K2-18 b using the Hubble WFC3 might be observable in just one transit observation with JWST with either NIRISS or NIRSpec. JexoSim 2.0 can be used to investigate the impact of complex noise and systematic effects on the final spectrum, plan observations and test the feasibility of novel science cases for JWST. It can also be customised for other astrophysical applications beyond exoplanet spectroscopy. JexoSim 2.0 is now available for use by the scientific community.



rate research

Read More

We present the development of the End-to-End simulator for the SOXS instrument at the ESO-NTT 3.5-m telescope. SOXS will be a spectroscopic facility, made by two arms high efficiency spectrographs, able to cover the spectral range 350-2000 nm with resolving power R=4500. The E2E model allows to simulate the propagation of photons starting from the scientific target of interest up to the detectors. The outputs of the simulator are synthetic frames, which will be mainly exploited for optimizing the pipeline development and possibly assisting for proper alignment and integration phases in laboratory and at the telescope. In this paper, we will detail the architecture of the simulator and the computational model, which are strongly characterized by modularity and flexibility. Synthetic spectral formats, related to different seeing and observing conditions, and calibration frames to be ingested by the pipeline are also presented.
End-to-end mission performance simulators (E2ES) are suitable tools to accelerate satellite mission development from concet to deployment. One core element of these E2ES is the generation of synthetic scenes that are observed by the various instruments of an Earth Observation mission. The generation of these scenes rely on Radiative Transfer Models (RTM) for the simulation of light interaction with the Earth surface and atmosphere. However, the execution of advanced RTMs is impractical due to their large computation burden. Classical interpolation and statistical emulation methods of pre-computed Look-Up Tables (LUT) are therefore common practice to generate synthetic scenes in a reasonable time. This work evaluates the accuracy and computation cost of interpolation and emulation methods to sample the input LUT variable space. The results on MONDTRAN-based top-of-atmosphere radiance data show that Gaussian Process emulators produced more accurate output spectra than linear interpolation at a fraction of its time. It is concluded that emulation can function as a fast and more accurate alternative to interpolation for LUT parameter space sampling.
The PLATO satellite mission project is a next generation ESA Cosmic Vision satellite project dedicated to the detection of exo-planets and to asteroseismology of their host-stars using ultra-high precision photometry. The main goal of the PLATO mission is to provide a full statistical analysis of exo-planetary systems around stars that are bright and close enough for detailed follow-up studies. Many aspects concerning the design trade-off of a space-based instrument and its performance can best be tackled through realistic simulations of the expected observations. The complex interplay of various noise sources in the course of the observations made such simulations an indispensable part of the assessment study of the PLATO Payload Consortium. We created an end-to-end CCD simulation software-tool, dubbed PLATOSim, which simulates photometric time-series of CCD images by including realistic models of the CCD and its electronics, the telescope optics, the stellar field, the pointing uncertainty of the satellite (or Attitude Control System [ACS] jitter), and all important natural noise sources. The main questions that were addressed with this simulator were the noise properties of different photometric algorithms, the selection of the optical design, the allowable jitter amplitude, and the expected noise budget of light-curves as a function of the stellar magnitude for different parameter conditions. The results of our simulations showed that the proposed multi-telescope concept of PLATO can fulfil the defined scientific goal of measuring more than 20000 cool dwarfs brighter than mV =11 with a precision better than 27 ppm/h which is essential for the study of earth-like exo-planetary systems using the transit method.
In this paper, we present an end-to-end view of IoT security and privacy and a case study. Our contribution is three-fold. First, we present our end-to-end view of an IoT system and this view can guide risk assessment and design of an IoT system. We identify 10 basic IoT functionalities that are related to security and privacy. Based on this view, we systematically present security and privacy requirements in terms of IoT system, software, networking and big data analytics in the cloud. Second, using the end-to-end view of IoT security and privacy, we present a vulnerability analysis of the Edimax IP camera system. We are the first to exploit this system and have identified various attacks that can fully control all the cameras from the manufacturer. Our real-world experiments demonstrate the effectiveness of the discovered attacks and raise the alarms again for the IoT manufacturers. Third, such vulnerabilities found in the exploit of Edimax cameras and our previous exploit of Edimax smartplugs can lead to another wave of Mirai attacks, which can be either botnets or worm attacks. To systematically understand the damage of the Mirai malware, we model propagation of the Mirai and use the simulations to validate the modeling. The work in this paper raises the alarm again for the IoT device manufacturers to better secure their products in order to prevent malware attacks like Mirai.
Launching in 2028, ESAs Atmospheric Remote-sensing Exoplanet Large-survey (ARIEL) survey of $sim$1000 transiting exoplanets will build on the legacies of Kepler and TESS and complement JWST by placing its high precision exoplanet observations into a large, statistically-significant planetary population context. With continuous 0.5--7.8~$mu$m coverage from both FGS (0.50--0.55, 0.8--1.0, and 1.0--1.2~$mu$m photometry; 1.25--1.95~$mu$m spectroscopy) and AIRS (1.95--7.80~$mu$m spectroscopy), ARIEL will determine atmospheric compositions and probe planetary formation histories during its 3.5-year mission. NASAs proposed Contribution to ARIEL Spectroscopy of Exoplanets (CASE) would be a subsystem of ARIELs FGS instrument consisting of two visible-to-infrared detectors, associated readout electronics, and thermal control hardware. FGS, to be built by the Polish Academy of Sciences Space Research Centre, will provide both fine guiding and visible to near-infrared photometry and spectroscopy, providing powerful diagnostics of atmospheric aerosol contribution and planetary albedo, which play a crucial role in establishing planetary energy balance. The CASE team presents here an independent study of the capabilities of ARIEL to measure exoplanetary metallicities, which probe the conditions of planet formation, and FGS to measure scattering spectral slopes, which indicate if an exoplanet has atmospheric aerosols (clouds and hazes), and geometric albedos, which help establish planetary climate. Our design reference mission simulations show that ARIEL could measure the mass-metallicity relationship of its 1000-planet single-visit sample to $>7.5sigma$ and that FGS could distinguish between clear, cloudy, and hazy skies and constrain an exoplanets atmospheric aerosol composition to $>5sigma$ for hundreds of targets, providing statistically-transformative science for exoplanet atmospheres.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا