Do you want to publish a course? Click here

Magnetism of Kitaev spin-liquid candidate material RuBr$_3$

190   0   0.0 ( 0 )
 Added by Yoshinori Imai
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ruthenium halide $alpha$-RuCl$_{3}$ is a promising candidate for a Kitaev spin liquid. However, the microscopic model describing $alpha$-RuCl$_{3}$ is still debated partly because of a lack of analogue materials for $alpha$-RuCl$_{3}$, which prevents tracking of electronic properties as functions of controlled interaction parameters. Here, we report a successful synthesis of RuBr$_{3}$. The material RuBr$_{3}$~possesses BiI$_3$-type structure (space group: $Roverline{3}$) where Ru$^{3+}$ form an ideal honeycomb lattice. Although RuBr$_{3}$ has a negative Weiss temperature, it undergoes a zigzag antiferromagnetic transition at $T_mathrm{N}=34$ K, as does $alpha$-RuCl$_{3}$. Our analyses indicate that the Kitaev and non-Kitaev interactions can be modified in ruthenium trihalides by changing the ligand sites, which provides a new platform for exploring Kitaev spin liquids.



rate research

Read More

We study on transport and magnetic properties of hydrated and lithium-intercalated $alpha$-RuCl$_3$, Li$_x$RuCl$_3 cdot y$H$_2$O, for investigating the effect on mobile-carrier doping into candidate materials for a realization of a Kitaev model. From thermogravitometoric and one-dimensional electron map analyses, we find two crystal structures of this system, that is, mono-layer hydrated Li$_x$RuCl$_3 cdot y$H$_2$O~$(xapprox0.56, yapprox1.3)$ and bi-layer hydrated Li$_x$RuCl$_3 cdot y$H$_2$O~$(xapprox0.56, yapprox3.9)$. The temperature dependence of the electrical resistivity shows a temperature hysteresis at 200-270 K, which is considered to relate with a formation of a charge order. The antiferromagnetic order at 7-13 K in pristine $alpha$-RuCl$_3$~ is successfully suppressed down to 2 K in bi-layer hydrated Li$_x$RuCl$_3 cdot y$H$_2$O, which is sensitive to not only an electronic state of Ru but also an interlayer distance between Ru-Cl planes.
Anyonic excitations emerging from a Kitaev spin liquid can form a basis for quantum computers. Searching for such excitations motivated intense research on the honeycomb iridate materials. However, access to a spin liquid ground state has been hindered by magnetic ordering. Cu2IrO3 is a new honeycomb iridate without thermodynamic signatures of a long-range order. Here, we use muon spin relaxation to uncover the magnetic ground state of Cu2IrO3. We find a two-component depolarization with slow and fast relaxation rates corresponding to distinct regions with dynamic and static magnetism, respectively. X-ray absorption spectroscopy and first principles calculations identify a mixed copper valence as the origin of this behavior. Our results suggest that a minority of Cu2+ ions nucleate regions of static magnetism whereas the majority of Cu+/Ir4+ on the honeycomb lattice give rise to a Kitaev spin liquid.
We use the constrained random phase approximation (cRPA) to derive from first principles the Ru-$t_{2g}$ Wannier function based model for the Kitaev spin-liquid candidate material $alpha$-RuCl$_3$. We find the non-local Coulomb repulsion to be sizable compared to the local one. In addition we obtain the contribution to the Hamiltonian from the spin-orbit coupling and find it to also contain non-negligible non-local terms. We invoke strong coupling perturbation theory to investigate the influence of these non-local elements of the Coulomb repulsion and the spin-orbit coupling on the magnetic interactions. We find that the non-local Coulomb repulsions cause a strong enhancement of the magnetic interactions, which deviate from experimental fits reported in the literature. Our results contribute to the understanding and design of quantum spin liquid materials via first principles calculations.
We present magnetization measurements on polycrystalline $beta$-Li$_2$IrO$_3$ under hydrostatic pressures up to 3 GPa and construct the temperature-pressure phase diagram of this material. The magnetically ordered phase with $T_{rm{N}}simeq 38$ K breaks down upon a pressure-induced first-order phase transition at $p_{rm{c}}$ $approx$ 1.4 GPa and gives way to a high-pressure phase, where a step-like feature in the magnetic susceptibility signals a structural dimerization with a loss of Ir$^{4+}$ magnetic moments. Nevertheless, magnetism manifests itself also above $p_{rm{c}}$ via the Curie-like susceptibility upturn with the effective moment of 0.7 $mu_B$. We suggest that a partially dimerized phase with a mixture of the magnetic and non-magnetic Ir$^{4+}$ sites develops above $p_{rm{c}}$. This phase is thermodynamically stable between 1.7 and 2.7 GPa according to our ab initio calculations. It confines the magnetic Ir$^{4+}$ sites to weakly coupled tetramers with the singlet ground state and no long-range magnetic order. Our results rule out the formation of a pressure-induced spin-liquid phase in $beta$-Li$_2$IrO$_3$ and reveal peculiarities of the magnetism collapse transition in a Kitaev material.
The Kitaev quantum spin liquid displays the fractionalization of quantum spins into Majorana fermions. The emergent Majorana edge current is predicted to manifest itself in the form of a finite thermal Hall effect, a feature commonly discussed in topological superconductors. Here we report on thermal Hall conductivity $kappa_{xy}$ measurements in $alpha$-RuCl$_3$, a candidate Kitaev magnet with the two-dimensional honeycomb lattice. In a spin-liquid (Kitaev paramagnetic) state below the temperature characterized by the Kitaev interaction $J_K/k_B sim 80$ K, positive $kappa_{xy}$ develops gradually upon cooling, demonstrating the presence of highly unusual itinerant excitations. Although the zero-temperature property is masked by the magnetic ordering at $T_N=7$ K, the sign, magnitude, and $T$-dependence of $kappa_{xy}/T$ at intermediate temperatures follows the predicted trend of the itinerant Majorana excitations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا