Do you want to publish a course? Click here

Weak continuity of curvature for connections in $L^p$

57   0   0.0 ( 0 )
 Added by Tristan Giron
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We study the weak continuity of two interrelated non-linear partial differential equations, the Yang-Mills equations and the Gau{ss}-Codazzi-Ricci equations, involving $L^p$-integrable connections. Our key finding is that underlying cancellations in the curvature form, especially the div-curl structure inherent in both equations, are sufficient to pass to the limit in the non-linear terms. We first establish the weak continuity of Yang-Mills equations and prove that any weakly converging sequence of weak Yang-Mills connections in $L^p$ converges to a weak Yang-Mills connection. We then prove that, for a sequence of isometric immersions with uniformly bounded second fundamental forms in $L^p$, the curvatures are weakly continuous, which leads to the weak continuity of the Gau{ss}-Codazzi-Ricci equations with respect to sequences of isometric immersions with uniformly bounded second fundamental forms in $L^p$. Our methods are independent of dimensions and do not rely on gauge changes.



rate research

Read More

For $l$-homogeneous linear differential operators $mathcal{A}$ of constant rank, we study the implication $v_jrightharpoonup v$ in $X$ and $mathcal{A} v_jrightarrow mathcal{A} v$ in $W^{-l}Y$ implies $F(v_j)rightsquigarrow F(v)$ in $Z$, where $F$ is an $mathcal{A}$-quasiaffine function and $rightsquigarrow$ denotes an appropriate type of weak convergence. Here $Z$ is a local $L^1$-type space, either the space $mathscr{M}$ of measures, or $L^1$, or the Hardy space $mathscr{H}^1$; $X,, Y$ are $L^p$-type spaces, by which we mean Lebesgue or Zygmund spaces. Our conditions for each choice of $X,,Y,,Z$ are sharp. Analogous statements are also given in the case when $F(v)$ is not a locally integrable function and it is instead defined as a distribution. In this case, we also prove $mathscr{H}^p$-bounds for the sequence $(F(v_j))_j$, for appropriate $p<1$, and new convergence results in the dual of Holder spaces when $(v_j)$ is $mathcal{A}$-free and lies in a suitable negative order Sobolev space $W^{-beta,s}$. The choice of these Holder spaces is sharp, as is shown by the construction of explicit counterexamples. Some of these results are new even for distributional Jacobians.
We consider a general class of sharp $L^p$ Hardy inequalities in $R^N$ involving distance from a surface of general codimension $1leq kleq N$. We show that we can succesively improve them by adding to the right hand side a lower order term with optimal weight and best constant. This leads to an infinite series improvement of $L^p$ Hardy inequalities.
We derive a weak-strong uniqueness principle for BV solutions to multiphase mean curvature flow of triple line clusters in three dimensions. Our proof is based on the explicit construction of a gradient-flow calibration in the sense of the recent work of Fischer et al. [arXiv:2003.05478] for any such cluster. This extends the two-dimensional construction to the three-dimensional case of surfaces meeting along triple junctions.
We continue to study regularity results for weak solutions of the large class of second order degenerate quasilinear equations of the form begin{eqnarray} text{div}big(A(x,u, abla u)big) = B(x,u, abla u)text{ for }xinOmega onumber end{eqnarray} as considered in our previous paper giving local boundedness of weak solutions. Here we derive a version of Harnacks inequality as well as local Holder continuity for weak solutions. The possible degeneracy of an equation in the class is expressed in terms of a nonnegative definite quadratic form associated with its principal part. No smoothness is required of either the quadratic form or the coefficients of the equation. Our results extend ones obtained by J. Serrin and N. Trudinger for quasilinear equations, as well as ones for subelliptic linear equations obtained by Sawyer and Wheeden in their 2006 AMS memoir article.
In this paper we study the $(BV,L^p)$-decomposition, $p=1,2$, of functions in metric random walk spaces, a general workspace that includes weighted graphs and nonlocal models used in image processing. We obtain the Euler-Lagrange equations of the corresponding variational problems and their gradient flows. In the case $p=1$ we also study the associated geometric problem and the thresholding parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا