No Arabic abstract
We use hyperbolic wavelet regression for the fast reconstruction of high-dimensional functions having only low dimensional variable interactions. Compactly supported periodic Chui-Wang wavelets are used for the tensorized hyperbolic wavelet basis. In a first step we give a self-contained characterization of tensor product Sobolev-Besov spaces on the $d$-torus with arbitrary smoothness in terms of the decay of such wavelet coefficients. In the second part we perform and analyze scattered-data approximation using a hyperbolic cross type truncation of the basis expansion for the associated least squares method. The corresponding system matrix is sparse due to the compact support of the wavelets, which leads to a significant acceleration of the matrix vector multiplication. In case of i.i.d. samples we can even bound the approximation error with high probability by loosing only $log$-terms that do not depend on $d$ compared to the best approximation. In addition, if the function has low effective dimension (i.e. only interactions of few variables), we qualitatively determine the variable interactions and omit ANOVA terms with low variance in a second step in order to increase the accuracy. This allows us to suggest an adapted model for the approximation. Numerical results show the efficiency of the proposed method.
The present article is devoted to developing the Legendre wavelet operational matrix method (LWOMM) to find the numerical solution of two-dimensional hyperbolic telegraph equations (HTE) with appropriate initial time boundary space conditions. The Legendre wavelets series with unknown coefficients have been used for approximating the solution in both of the spatial and temporal variables. The basic idea for discretizing two-dimensional HTE is based on differentiation and integration of operational matrices. By implementing LWOMM on HTE, HTE is transformed into algebraic generalized Sylvester equation. Numerical experiments are provided to illustrate the accuracy and efficiency of the presented numerical scheme. Comparisons of numerical results associated with the proposed method with some of the existing numerical methods confirm that the method is easy, accurate and fast experimentally. Moreover, we have investigated the convergence analysis of multidimensional Legendre wavelet approximation. Finally, we have compared our result with the research article of Mittal and Bhatia (see [1]).
We propose a signal analysis tool based on the sign (or the phase) of complex wavelet coefficients, which we call a signature. The signature is defined as the fine-scale limit of the signs of a signals complex wavelet coefficients. We show that the signature equals zero at sufficiently regular points of a signal whereas at salient features, such as jumps or cusps, it is non-zero. At such feature points, the orientation of the signature in the complex plane can be interpreted as an indicator of local symmetry and antisymmetry. We establish that the signature rotates in the complex plane under fractional Hilbert transforms. We show that certain random signals, such as white Gaussian noise and Brownian motions, have a vanishing signature. We derive an appropriate discretization and show the applicability to signal analysis.
We prove that a variant of the classical Sobolev space of first-order dominating mixed smoothness is equivalent (under a certain condition) to the unanchored ANOVA space on $mathbb{R}^d$, for $d geq 1$. Both spaces are Hilbert spaces involving weight functions, which determine the behaviour as different variables tend to $pm infty$, and weight parameters, which represent the influence of different subsets of variables. The unanchored ANOVA space on $mathbb{R}^d$ was initially introduced by Nichols & Kuo in 2014 to analyse the error of quasi-Monte Carlo (QMC) approximations for integrals on unbounded domains; whereas the classical Sobolev space of dominating mixed smoothness was used as the setting in a series of papers by Griebel, Kuo & Sloan on the smoothing effect of integration, in an effort to develop a rigorous theory on why QMC methods work so well for certain non-smooth integrands with kinks or jumps coming from option pricing problems. In this same setting, Griewank, Kuo, Leovey & Sloan in 2018 subsequently extended these ideas by developing a practical smoothing by preintegration technique to approximate integrals of such functions with kinks or jumps. We first prove the equivalence in one dimension (itself a non-trivial task), before following a similar, but more complicated, strategy to prove the equivalence for general dimensions. As a consequence of this equivalence, we analyse applying QMC combined with a preintegration step to approximate the fair price of an Asian option, and prove that the error of such an approximation using $N$ points converges at a rate close to $1/N$.
We apply domain functionals to study the conformal capacity of condensers $(G,E)$ where $G$ is a simply connected domain in the complex plane and $E$ is a compact subset of $G$. Due to conformal invariance, our main tools are the hyperbolic geometry and functionals such as the hyperbolic perimeter of $E$. Novel computational algorithms based on implementations of the fast multipole method are combined with analytic techniques. Computational experiments are used throughout to, for instance, demonstrate sharpness of established inequalities. In the case of model problems with known analytic solutions, very high precision of computation is observed.
We present and analyze a novel wavelet-Fourier technique for the numerical treatment of multidimensional advection-diffusion-reaction equations based on the CORSING (COmpRessed SolvING) paradigm. Combining the Petrov-Galerkin technique with the compressed sensing approach, the proposed method is able to approximate the largest coefficients of the solution with respect to a biorthogonal wavelet basis. Namely, we assemble a compressed discretization based on randomized subsampling of the Fourier test space and we employ sparse recovery techniques to approximate the solution to the PDE. In this paper, we provide the first rigorous recovery error bounds and effective recipes for the implementation of the CORSING technique in the multi-dimensional setting. Our theoretical analysis relies on new estimates for the local a-coherence, which measures interferences between wavelet and Fourier basis functions with respect to the metric induced by the PDE operator. The stability and robustness of the proposed scheme is shown by numerical illustrations in the one-, two-, and three-dimensional case.