Do you want to publish a course? Click here

Well-mixing vertices and almost expanders

157   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We study regular graphs in which the random walks starting from a positive fraction of vertices have small mixing time. We prove that any such graph is virtually an expander and has no small separator. This answers a question of Pak [SODA, 2002]. As a corollary, it shows that sparse (constant degree) regular graphs with many well-mixing vertices have a long cycle, improving a result of Pak. Furthermore, such cycle can be found in polynomial time. Secondly, we show that if the random walks from a positive fraction of vertices are well-mixing, then the random walks from almost all vertices are well-mixing (with a slightly worse mixing time).



rate research

Read More

181 - Yuval Filmus 2021
We show that if $fcolon S_n to {0,1}$ is $epsilon$-close to linear in $L_2$ and $mathbb{E}[f] leq 1/2$ then $f$ is $O(epsilon)$-close to a union of mostly disjoint cosets, and moreover this is sharp: any such union is close to linear. This constitutes a sharp Friedgut-Kalai-Naor theorem for the symmetric group. Using similar techniques, we show that if $fcolon S_n to mathbb{R}$ is linear, $Pr[f otin {0,1}] leq epsilon$, and $Pr[f = 1] leq 1/2$, then $f$ is $O(epsilon)$-close to a union of mostly disjoint cosets, and this is also sharp; and that if $fcolon S_n to mathbb{R}$ is linear and $epsilon$-close to ${0,1}$ in $L_infty$ then $f$ is $O(epsilon)$-close in $L_infty$ to a union of disjoint cosets.
69 - Michal Parnas 2020
Let $mathcal{F}$ and $mathcal{G}$ be two $t$-uniform families of subsets over $[k] = {1,2,...,k}$, where $|mathcal{F}| = |mathcal{G}|$, and let $C$ be the adjacency matrix of the bipartite graph whose vertices are the subsets in $mathcal{F}$ and $mathcal{G}$, and there is an edge between $Ain mathcal{F}$ and $B in mathcal{G}$ if and only if $A cap B eq emptyset$. The pair $(mathcal{F},mathcal{G})$ is $q$-almost cross intersecting if every row and column of $C$ has exactly $q$ zeros. We consider $q$-almost cross intersecting pairs that have a circulant intersection matrix $C_{p,q}$, determined by a column vector with $p > 0$ ones followed by $q > 0$ zeros. This family of matrices includes the identity matrix in one extreme, and the adjacency matrix of the bipartite crown graph in the other extreme. We give constructions of pairs $(mathcal{F},mathcal{G})$ whose intersection matrix is $C_{p,q}$, for a wide range of values of the parameters $p$ and $q$, and in some cases also prove matching upper bounds. Specifically, we prove results for the following values of the parameters: (1) $1 leq p leq 2t-1$ and $1 leq q leq k-2t+1$. (2) $2t leq p leq t^2$ and any $q> 0$, where $k geq p+q$. (3) $p$ that is exponential in $t$, for large enough $k$. Using the first result we show that if $k geq 4t-3$ then $C_{2t-1,k-2t+1}$ is a maximal isolation submatrix of size $ktimes k$ in the $0,1$-matrix $A_{k,t}$, whose rows and columns are labeled by all subsets of size $t$ of $[k]$, and there is a one in the entry on row $x$ and column $y$ if and only if subsets $x,y$ intersect.
We introduce a new subclass of chordal graphs that generalizes split graphs, which we call well-partitioned chordal graphs. Split graphs are graphs that admit a partition of the vertex set into cliques that can be arranged in a star structure, the leaves of which are of size one. Well-partitioned chordal graphs are a generalization of this concept in the following two ways. First, the cliques in the partition can be arranged in a tree structure, and second, each clique is of arbitrary size. We provide a characterization of well-partitioned chordal graphs by forbidden induced subgraphs, and give a polynomial-time algorithm that given any graph, either finds an obstruction, or outputs a partition of its vertex set that asserts that the graph is well-partitioned chordal. We demonstrate the algorithmic use of this graph class by showing that two variants of the problem of finding pairwise disjoint paths between k given pairs of vertices is in FPT parameterized by k on well-partitioned chordal graphs, while on chordal graphs, these problems are only known to be in XP. From the other end, we observe that there are problems that are polynomial-time solvable on split graphs, but become NP-complete on well-partitioned chordal graphs.
In this paper we study expander graphs and their minors. Specifically, we attempt to answer the following question: what is the largest function $f(n,alpha,d)$, such that every $n$-vertex $alpha$-expander with maximum vertex degree at most $d$ contains {bf every} graph $H$ with at most $f(n,alpha,d)$ edges and vertices as a minor? Our main result is that there is some universal constant $c$, such that $f(n,alpha,d)geq frac{n}{clog n}cdot left(frac{alpha}{d}right )^c$. This bound achieves a tight dependence on $n$: it is well known that there are bounded-degree $n$-vertex expanders, that do not contain any grid with $Omega(n/log n)$ vertices and edges as a minor. The best previous result showed that $f(n,alpha,d) geq Omega(n/log^{kappa}n)$, where $kappa$ depends on both $alpha$ and $d$. Additionally, we provide a randomized algorithm, that, given an $n$-vertex $alpha$-expander with maximum vertex degree at most $d$, and another graph $H$ containing at most $frac{n}{clog n}cdot left(frac{alpha}{d}right )^c$ vertices and edges, with high probability finds a model of $H$ in $G$, in time poly$(n)cdot (d/alpha)^{Oleft( log(d/alpha) right)}$. We note that similar but stronger results were independently obtained by Krivelevich and Nenadov: they show that $f(n,alpha,d)=Omega left(frac{nalpha^2}{d^2log n} right)$, and provide an efficient algorithm, that, given an $n$-vertex $alpha$-expander of maximum vertex degree at most $d$, and a graph $H$ with $Oleft( frac{nalpha^2}{d^2log n} right)$ vertices and edges, finds a model of $H$ in $G$. Finally, we observe that expanders are the `most minor-rich family of graphs in the following sense: for every $n$-vertex and $m$-edge graph $G$, there exists a graph $H$ with $O left( frac{n+m}{log n} right)$ vertices and edges, such that $H$ is not a minor of $G$.
94 - Eyal Karni , Tali Kaufman 2020
A two-dimensional simplicial complex is called $d$-{em regular} if every edge of it is contained in exactly $d$ distinct triangles. It is called $epsilon$-expanding if its up-down two-dimensional random walk has a normalized maximal eigenvalue which is at most $1-epsilon$. In this work, we present a class of bounded degree 2-dimensional expanders, which is the result of a small 2-complex action on a vertex set. The resulted complexes are fully transitive, meaning the automorphism group acts transitively on their faces. Such two-dimensional expanders are rare! Known constructions of such bounded degree two-dimensional expander families are obtained from deep algebraic reasonings (e.g. coset geometries). We show that given a small $d$-regular two-dimensional $epsilon$-expander, there exists an $epsilon=epsilon(epsilon)$ and a family of bounded degree two-dimensional simplicial complexes with a number of vertices goes to infinity, such that each complex in the family satisfies the following properties: * It is $4d$-regular. * The link of each vertex in the complex is the same regular graph (up to isomorphism). * It is $epsilon$ expanding. * It is transitive. The family of expanders that we get is explicit if the one-skeleton of the small complex is a complete multipartite graph, and it is random in the case of (almost) general $d$-regular complex. For the randomized construction, we use results on expanding generators in a product of simple Lie groups. This construction is inspired by ideas that occur in the zig-zag product for graphs. It can be seen as a loose two-dimensional analog of the replacement product.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا