Do you want to publish a course? Click here

Control of electronic band profiles through depletion layer engineering in core-shell nanocrystals

397   0   0.0 ( 0 )
 Added by Nicola Curreli
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The understanding of depletion layers is of major importance to control the optical and electronic properties of metal oxide (MO) nanocrystals (NCs). Here, we show that depletion layer engineering is the main mechanism of photodoping of MO NCs. We show that the introduction of different electronic interfaces induces a double-bending of the electronic bands and a distinct carrier density profile. We found that the light-induced depletion layer modulation and bending of the bands close to the surface of the nanocrystal is the main mechanism responsible for the storage of extra electrons after photodoping in MO NCs. We support our results by a combined experimental and theoretical approach in the case of Sn:In2O3/In2O3 core-shell NCs, in which we compare numerical simulations with empirical modeling and experiments. This allows not only to extract the main mechanism of photodoping in MO NCs but also to engineer the charge storage capability of MO NCs after photodoping. Our results are transferable to other core-multishell systems, opening up a novel direction to control the optoelectronic properties of nanoscale MOs by designing their energetic band profiles through depletion layer engineering.



rate research

Read More

Strain engineering in Sn-rich group IV semiconductors is a key enabling factor to exploit the direct band gap at mid-infrared wavelengths. Here, we investigate the effect of strain on the growth of GeSn alloys in a Ge/GeSn core/shell nanowire geometry. Incorporation of Sn content in the 10-20 at.% range is achieved with Ge core diameters ranging from 50nm to 100nm. While the smaller cores lead to the formation of a regular and homogeneous GeSn shell, larger cores lead to the formation of multi-faceted sidewalls and broadened segregation domains, inducing the nucleation of defects. This behavior is rationalized in terms of the different residual strain, as obtained by realistic finite element method simulations. The extended analysis of the strain relaxation as a function of core and shell sizes, in comparison with the conventional planar geometry, provides a deeper understanding of the role of strain in the epitaxy of metastable GeSn semiconductors.
We present a theoretical description of excitons and positively and negatively charged trions in giant CdSe/CdS core-shell nanocrystals (NCs). The developed theory provides the parameters describing the fine structure of excitons in CdSe/CdS core/thick shell NCs as a function of the CdSe/CdS conduction band offset and the CdSe core radius. We have also developed a general theory describing the fine structure of positively charged trions created in semiconductor NCs with a degenerate valence band. The calculations take into account the complex structure of the CdSe valence band and inter-particle Coulomb and exchange interaction. Presented in this paper are the CdSe core size and CdSe/CdS conduction band offset dependences (i) of the positively charged trion fine structure, (ii) of the binding energy of the negatively charged trion, and (iii) of the radiative decay time for excitons and trions. The results of theoretical calculations are in qualitative agreement with available experimental data.
Surface ligand exchange on all-inorganic perovskite nanocrystals of composition CsPbBrI$_{2}$ reveals improved optoelectronic properties due to strong interactions of the nanocrystal with mono-functionalized porphyrin derivatives. The interaction is verified experimentally with an array of spectroscopic measurements as well as computationally by exploiting density functional theory calculations. The enhanced current efficiency is attributed to a lowering of the charging energy by a factor of 2 to 3, which is determined by combining electronic and optical measurements on a selection of ligands. The coupled organic-inorganic nanostructures are successfully deployed in a light emitting device with higher current efficacy and improved charge carrier balance, magnifying the efficiency almost fivefold compared to the native ligand.
The suitability of Ti as a band gap modifier for $alpha$-Ga$_2$O$_3$ was investigated, taking advantage of the isostructural {alpha}-phases and high band gap difference between Ti$_2$O$_3$ and Ga$_2$O$_3$. Films of Ti:Ga$_2$O$_3$, with a range of Ti concentrations, synthesized by atomic layer deposition on sapphire substrates, were characterized to determine how crystallinity and band gap vary with composition for this alloy. The deposition of crystalline $alpha$-(Ti$_x$Ga$_{1-x}$)$_2$O$_3$ films with up to x~5.3%, was demonstrated. At greater Ti concentration, the films became amorphous. Modification of the band gap over a range of ~ 270 meV was achieved across the crystalline films and a maximum change in band gap from pure $alpha$-Ga$_2$O$_3$ of ~1.1 eV was observed for the films of greatest Ti fraction (61% Ti relative to Ga). The ability to maintain a crystalline phase at low fractions of Ti, accompanied by a significant modification in band gap shows promise for band gap engineering and the enhancement in versatility of application of $alpha$-Ga$_2$O$_3$ in optoelectronic devices.
179 - Rui Wu , Shilei Ding , Youfang Lai 2018
The spin configuration in the ferromagnetic part during the magnetization reversal plays a crucial role in the exchange bias effect. Through Monte Carlo simulation, the exchange bias effect in ferromagnetic-antiferromagnetic core-shell nanoparticles is investigated. Magnetization reversals in the ferromagnetic core were controlled between the coherent rotation and the domain wall motion by modulating ferromagnetic domain wall width with parameters of uniaxial anisotropy constant and exchange coupling strength. An anomalous monotonic dependence of exchange bias on the uniaxial anisotropy constant is found in systems with small exchange coupling, showing an obvious violation of classic Meiklejohn-Bean model, while domain walls are found to form close to the interface and propagate in the ferromagnetic core with larger uniaxial anisotropy in both branches of the hysteresis. The asymmetric magnetization reversal with the formation of a spherical domain wall dramatically reduces the coercive field in the ascending branch, leading to the enhancement of the exchange bias. The results provide another degree of freedom to optimize the magnetic properties of magnetic nanoparticles for applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا