Do you want to publish a course? Click here

Limiting free energy of multi-layer generalized linear models

82   0   0.0 ( 0 )
 Added by Jiaming Xia
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compute the high-dimensional limit of the free energy associated with a multi-layer generalized linear model. Under certain technical assumptions, we identify the limit in terms of a variational formula. The approach is to first show that the limit is a solution to a Hamilton-Jacobi equation whose initial condition is related to the limiting free energy of a model with one fewer layer. Then, we conclude by an iteration.



rate research

Read More

87 - Zhou Fan , Yihong Wu 2021
We study the mean-field Ising spin glass model with external field, where the random symmetric couplings matrix is orthogonally invariant in law. For sufficiently high temperature, we prove that the replica-symmetric prediction is correct for the first-order limit of the free energy. Our analysis is an adaption of a conditional quenched equals annealed argument used by Bolthausen to analyze the high-temperature regime of the Sherrington-Kirkpatrick model. We condition on a sigma-field that is generated by the iterates of an Approximate Message Passing algorithm for solving the TAP equations in this model, whose rigorous state evolution was recently established.
We consider the mixed $p$-spin mean-field spin glass model with Ising spins and investigate its free energy in the spirit of the TAP approach, named after Thouless, Anderson, and Palmer. More precisely, we define and compute the generalized TAP correction, and establish the corresponding generalized TAP representation for the free energy. In connection with physicists replica theory, we introduce the notion of generalized TAP states, which are the maximizers of the generalized TAP free energy, and show that their order parameters match the order parameter of the ancestor states in the Parisi ansatz. We compute the critical point equations of the TAP free energy that generalize the classical TAP equations for pure states. Furthermore, we give an exact description of the region where the generalized TAP correction is replica symmetric, in which case it coincides with the classical TAP correction, and show that Plefkas condition is necessary for this to happen. In particular, our result shows that the generalized TAP correction is not always replica symmetric on the points corresponding to the Edwards-Anderson parameter.
In a recent paper [14], we developed the generalized TAP approach for mixed $p$-spin models with Ising spins at positive temperature. Here we extend these results in two directions. We find a simplified representation for the energy of the generalized TAP states in terms of the Parisi measure of the model and, in particular, show that the energy of all states at a given distance from the origin is the same. Furthermore, we prove the analogues of the positive temperature results at zero temperature, which concern the ground-state energy and the organization of ground-state configurations in space.
We consider a general statistical inference model of finite-rank tensor products. For any interaction structure and any order of tensor products, we identify the limit free energy of the model in terms of a variational formula. Our approach consists of showing first that the limit free energy must be the viscosity solution to a certain Hamilton-Jacobi equation.
We consider the variable selection problem of generalized linear models (GLMs). Stability selection (SS) is a promising method proposed for solving this problem. Although SS provides practical variable selection criteria, it is computationally demanding because it needs to fit GLMs to many re-sampled datasets. We propose a novel approximate inference algorithm that can conduct SS without the repeated fitting. The algorithm is based on the replica method of statistical mechanics and vector approximate message passing of information theory. For datasets characterized by rotation-invariant matrix ensembles, we derive state evolution equations that macroscopically describe the dynamics of the proposed algorithm. We also show that their fixed points are consistent with the replica symmetric solution obtained by the replica method. Numerical experiments indicate that the algorithm exhibits fast convergence and high approximation accuracy for both synthetic and real-world data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا