The History of Metal Enrichment Traced by X-ray Observations of High Redshift Galaxy Clusters


Abstract in English

We present the analysis of deep X-ray observations of 10 massive galaxy clusters at redshifts $1.05 < z < 1.71$, with the primary goal of measuring the metallicity of the intracluster medium (ICM) at intermediate radii, to better constrain models of the metal enrichment of the intergalactic medium. The targets were selected from X-ray and Sunyaev-Zeldovich (SZ) effect surveys, and observed with both the textit{XMM-Newton} and textit{Chandra} satellites. For each cluster, a precise gas mass profile was extracted, from which the value of $r_{500}$ could be estimated. This allows us to define consistent radial ranges over which the metallicity measurements can be compared. In general, the data are of sufficient quality to extract meaningful metallicity measurements in two radial bins, $r<0.3r_{500}$ and $0.3<r/r_{500}<1.0$. For the outer bin, the combined measurement for all ten clusters, $Z/Z_{odot} = 0.21 pm 0.09$, represents a substantial improvement in precision over previous results. This measurement is consistent with, but slightly lower than, the average metallicity of 0.315 Solar measured at intermediate-to-large radii in low-redshift clusters. Combining our new high-redshift data with the previous low-redshift results allows us to place the tightest constraints to date on models of the evolution of cluster metallicity at intermediate radii. Adopting a power law model of the form $Z propto left(1+zright)^gamma$, we measure a slope $gamma = -0.5^{+0.4}_{-0.3}$, consistent with the majority of the enrichment of the ICM having occurred at very early times and before massive clusters formed, but leaving open the possibility that some additional enrichment in these regions may have occurred since a redshift of 2.

Download