Adopting a binned method, we model-independently reconstruct the mass function of primordial black holes (PBHs) from GWTC-2 and find that such a PBH mass function can be explained by a broad red-tilted power spectrum of curvature perturbations. Even though GW190521 with component masses in upper mass gap $(m>65M_odot)$ can be naturally interpreted in the PBH scenario, the events (including GW190814, GW190425, GW200105, and GW200115) with component masses in the light mass range $(m<3M_odot)$ are quite unlikely to be explained by binary PBHs although there are no electromagnetic counterparts because the corresponding PBH merger rates are much smaller than those given by LIGO-Virgo. Furthermore, we predict that both the gravitational-wave (GW) background generated by the binary PBHs and the scalar-induced GWs accompanying the formation of PBHs should be detected by the ground-based and space-borne GW detectors and pulsar timing arrays in the future.